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On rings which satisfy the minimum condition for
the right-hand ideals

by

Jakob Levitzki

Jerusalem

Introduction.

A ring S which satisfies the double-chaim-condition (or the
equivalent maximum and minimum condition) for the right-
hand (in short: r.h.) ideals, possesses accoording to E. Artin 1) a
nilpotent radical R, and the quotient ring S/R is semi-simple.
This fact, as well as the results obtained by Artin concerning the
"primary" and the "completely primary" rings attached to S
are valid for a wider class of rings. In the present note it is shown
that the maximum condition can be omitted without affecting the
results achieved by Artin.
The method used in the present note is partly an improvement

of one used by the author in a previous paper 2). On the other
hand, the results obtained presently yield a generalisation of the
principal theorem proved in L, which can be stated now as follows:
Each nil-subring of a ring which satisfies the minimum condition
for the r.h. ideals, is nilpotent. This statement is in particular a
solution of a problem raised by G. Kôthe 3), whether or not
there exist potent nil-rings which satisfy the maximum or the
minimum condition for the r.h. ideals.
The importance of the nil-rings was first emphasized by

KÕthe 3), who considers rings of a more general type but of
similar structure, and which actually might contain potent (i.e.
non-nilpotent) nil-subrings, and even nil-ideals.

1) E. ARTIN, Zur Theorie der hyperkomplexen Zahlen [Hamb. Abh. 5 (1927),
251-260], referred to as A.

2) J. LEViTZKi, Über nilpotente Unterringe [Math. Ann. 105 (1931), 620-

627], referred to as L.

3) G. KÕTHE, Die Struktur der Ringe, deren Restklassenring nach dem Radikal

vollstândig reduzibel ist [ Math. Zeitschr. 32 (1930), 1612013186], referred to as K.
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1. Notations and preliminary remarks.

1. As it is well known, a ring S is said to satisfy the minimum
(maximum ) condition for the r.h. ideals, if each non empty set of
r.h. ideals contains a r.h. ideal which is not a proper subset of

any other r.h. ideal of the set (respectively, whieh does not con-
tain any other r.h. ideal of the set as a proper subset). This is

equivalent with the condition that for each infinité "deseending
chain" of r.h. ideals NlD9î,D... (resp. for each "ascending chain"
9Î 1 Ç-: 9Î 2 C-: ... ) an index ni exists such that 9Îi = 9Îk if yn  i,
m  k. We say in short: S is a r.h.m.c.-ring.

2. If A is a finite or an infinite subset of a ring S, then let 5
be the set containing A and all the finite sums and differences
of all the finite products which ca n be derived from the elements
of A. Then S is evidently a subring of S, and we say: S is generated
by A. Evidently S is the minimal subring (in the usual sense)
of S containing A.

3. If A and B are subsets of a ring S, then we denote by A B
the set of all the finite sums of elements which have the form ab,
where a E A, b E B. Thus if B is a r.h. ideal or A is a 1.h. ideal,
then also A B is a r.h. ideal, or respectivley a l.h. ideal.

4. If 9î is a r.h. ideal of a ring S, and S is a subset of S, them
we denote by ( S, Sffi) the minimal r.h. ideal containing ,S as well
as S9î, i.e. the set of all éléments of the form S =Í= ÀiSi + Ys.r.
where the Âi are positive integers, si, Sé ES and r. e 9t.

5. If ffil, ..., 9î,,, are r.h. ideals of a ring S, then their sum,

i.e. the set of all clements of the form

6. If S’ and S" are subsets of a ring S, then vive demote by
[S’, S"] the set of all éléments of S which belong to S’ as well
as to S". If S" is a r.h. ideal in S and S’ is a subring of S, then
evidently [S’, S"] is a r.h. ideal in S’.

7. An element a of a ring S is called nilpotent of index n if
an - 0, , an-1 =F- o .
A nilring is a ring which contains nilpotent éléments only.
A ring N is called nilpotent of index n, if Nn = 0, NI,-’ * 0.
An element a of a ring S is called properly nilpotent, if the r.h.

ideal aS is nilpotent.
8. A r.h. ideal 9t of a ring S is called primitive, if 9î ig potent

(i.e. not nilpotent) and does not contain a potent r.h. ideal as a
proper subset. It follows easily, that if S is a r.h.m.c.-ring, then
cach potent r.h. ideal of S contains a primitive r.h. ideal.
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II. On subrings generated by finite subsets.

LEMMA 1. If S is a r.h.m.c.-ring (see I, 1), and if a finite set
of elements al, ..., am of S generates a potent ring N (see I, 2),
then for a certain positive integer Â the r.h. ideal Ti = ATÀS which
is evidently different from zero (since N is potent), satisfies the
relations

Proof. Since evidently NS D N2S D N3S D ..., , it follows by
I, 1 that for a certain positive integer Â the relations

which complètes the proof.
LEMMA 2 4). If S is a r.h.m.c.-ring, and if for a certain r.h.

ideal 9î, 9î 0, and a finite set of elements a1, ..., a m of S the
relation N ---- (al9’t, ..., am9’t) holds, then there exists an infinite
sequence b1, b2, ... each bÂ being a certain aj, such that the
relation 0 C bÂbÂ+1 ... bÂ+a9’t  bÂffi is satisfied for arbitrary
positive integers A and a.

Proof. From 9î :A 0 it follows that not all the ai9t are zero.
Let il be the minimal index such that ail ffi =F 0. Since

ai,,9Î = (ai1al9’t, ..., ailam9’t) -=F 0, it follows that not all the

ai1aaffi are zero, and again let i2 be the minimal index such that
ai.,ai.9t :Y’-- 0. This process can be infinitely repeated, and setting
bj - ai, we obtain (by induction) the required infinite sequence.
The lemma follows now from

THEOREM 1. If S is a r.h.m.c.-ring and N is a subring of S which
is generated by a finite subset a1, a2, ..., a., then N is potent
if and only if S contains a r.h. ideal 9t such that 9î e 0 and
(a,,î, ..., a . 9t) - 9î.

Proof. This is an inmediate consequence of lemmas 1 and 2.

THEOREM 2. Each nil-subring of a r.h.m.c.-ring S, which is

generated by a finite subset of S is nilpotent. Moreover: Let
N be a potent subring of S which is generated by the finite set

4) The proof of this lemma is included in the proof of theorem 2 in L.
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dl, d2, ..., dm; then N contains potent elements of the form

C1C2 ... Cj, where each ci is a certain dj.
Proof. Let a,, ..., as be a subset of the dj so that the ring N

which is generated by the ai is still potent and s is of the least
possible value. By lemma 1 follows the existence of a r.h. ideal
9t so that 9î:É 0, and the relations (1) are satisfied. By lemma 2 we
deduce the existence of an infinite sequence b1, b2, ... sueh that
each bj is a certain ai and the relation

is satisfied for each Â and e. If now s = 1 then obviousely a, is
a potent element and the theorem is proved. If s &#x3E; 1 then by
assumption each proper subset of the ai generates a nilpotent
ring, in particular each ai is nilpotent. In this case let t dénote
the index of the nilpotent élément ai and let u be the index of
the nilpotent ring which is generated by the finite set a2, ..., as. It
follows easily that in each product of the form PÂ, f1=bÀ+1bÂ+e...bÂ+f2
where e &#x3E; t, (! &#x3E; u at least one of the factors must be equal
to al and a,t least one of them must be different from a,, hence,
for a certain positive integer k (which can be chosen so that
k  u ) the elements of the infinite sequence bk, bk+1, ... can be
joined to finite subsequences bkl bk+1, ... bk+f1; bk+f11 +1’ bk+f12+2’ ..., 
bk+f1¡+f12; ... which have the following properties: The product
of the elements of each subsequence, the factors being taken in
the written order, has the form a1(Jai’ ai ... ai’ where i # 1,
Â = ly ..., (!, hence

We denote by pA the product which belongs to the Àth sub-
sequence, and thus obtain the infinite sequence

Since the pZ are of the form a’ai,, ... ai., where the ai;. are

taken from the finite set a2, ..., as, it follows by (3) that also
PÂ belong to a certain finite set which we denote by dl, ..., dm.
Since, further, from the definition of the PÂ it follows easily that
each product of the form PÂPÂ+1 - .. PÂ+Q is equal to a certain
Pi.k, we have

for arbitrary positive and é. The ring generated by the d;.. is in
virtue of (5) potent and evidently a subring of N. Again let
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al, ..., as be a subset of the di such that the ring lV which is

generated by the ai - and is therefore a subring of N - is still
potent, while s’ is of the least possible value. As before follows
the existence of a r.h. ideal 9t such that the relations (1 ), in which
Â, 9t and N arc replaced respectively by À’ 9l and N where )w’
is a suitably chosen integer, are again satisfied. Since N C N

aiffi  aiffi; on the other hand, from the definition of the ai
follows by (5) that âi9îÇ:a,9î, and hence we have

Since evidently al ffi c 8t (otherwise a,9î =- 9î, i.e. the element

al is potent, which contradicts s &#x3E; 1) it follows by (6) that

If now s = 1, then a1ffi == 9t, i.e. the element al is potent and has
according to its definition the required form, hence in this

case the theorem is proved. In case s &#x3E; 1, the process which

applied on the r.h. ideal 9t leads to the construction of the r.h.
ideal 9î such that ? C 9î, can be now repeatedly applied on 91
and thus in a similar way the r.h. ideal ffi can be found so that

Thus each new step either provides a potent element which
has the required form, or adds a further r.h. ideal which is a

proper subset of the preceding. By the minimum condition it

follows therefore that after a finite number of steps a potent
élément can be found which has the required form.

III. On the divisors of zéro in a r.h.m.c.-ring.

THEOREM 3. Let S be a r.h.m.c.-ring, S’ a subring of S and
8l a r.h. ideal in S; let further T denote the maximal subset of
S’ satisfying the relation ST C gî 5). Then a finite subset S of
S’ can be found so that T is also the maximal subset of S’ satisfying
the relation ST C 8t.

Proof. Let So be an arbitrary finite subset of S’ and To the
maximal subset of S’ satisfying the relation SoTo Ç 8t, we con-
sider now the set of all r.h. ideals of the form 9to = (T 0’ T oS ),

5) i.e. T is then set of all elements t of S which satisfy the relative St C R.
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then in virtue of thc minimum condition follows the existence

of a certain finite subset S = (al, ..., a;J of S so that if T is the
maximal subset of S’ satisfying the relation S TC 9î, the r.h.

ideal 9î = (T, TS) is minimal (i.e. for any r.h. ideal mo of the
set we have 9t 1) ffio). From S’T C 9Î follows in particular ST Ç 8t,
i.e. T C T; the theorem will be evidently proved if we show that
T = T. To this end it is evidently sufficient to prove that each
element a of S’ satisfies the relation ai; C ?. In fact, setting
S = (ai, ..., aÂ, a) and denoting by T’ the maximal subset of

T = [?, 5’] which implies T = T, i.e. aT Ç R, q.e.d.
COROLLARY. Evidently the set S can be replaced by any finite

subset of S’ containing S; in case S’ # 0 it may be therefore

assumed that also S :71-- 0.

THEOREM 4. Let S be a r.h.m.c.-ring, S’ =F 0 a nil-subring of
S and T the maximal subset of S’ satisfying the relation S’T = 0;
then T =F 0.

Proof. Applying theorem 3 to the special case 9t = 0 we deduce
the existence of a finite subset S of S’ such that the maximal
subset T of 5’’ which satisfies the relation S’ T = 0 is also the

maximal subset of S’ satisfying the relation ST = 0 and further-
more (corollary to theorem 3) 5 ::/=- o. If now N denotes the nil-
subring of S which is generated by S, then (by theorem 2) N
is nilpotent and hence denoting by m the index of N we have
Nm-1 -:A 0 and 0 = Nm = NNm-1 D- SN, i.e. Nm-1 C T which
implies T =F 0, q.e.d.

THEOREM 5. Let S be a r.h.m.c.-ring, S’ a nil-subring of S, T
the maximal subset of S’ satisfying the relation S’T - 0 and T
the maximal subset of S’ satisfying the relation ST C (T, TS ).
Then if S’ :) T also T :D T.

Proof. Applying theorem 3 to the special case 91 (T, T5)
we deduce the existence of a finite subset S = (a,, ..., am) of
S’ such that T is the maximal subset of S’ satisfying the relation
S T C T. Since for S’ - 0 the theorem is self evident, we may
assume S’ ::/=- 0 and hence (by the corollary to theorem 3) also
S 0. From S’ D T follows the existence of an element a of S
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such that a E S’ but a  T ; by the corollary to theorem 3 we may
now replace S by the set S* == (a1, ..., am, a). Let now N* be
the ring generated by S* then (by theorem 2) N* is nilpotent,
and if Â is the index of N*, it follows from N*Â = 0 that
S* N*Â-1 = 0 Ç (T, TS), and -hence N*Â-1 C T. Let now r be the
smallest positive integer for which N*r C T ; then in case r = 1
the theorem is true, since then N* C T but N* not Ç l’ in virtue
of a E N, a  T ; in case r &#x3E; 1 we prove that Nr not C T and thus
complete the proof of the theorem. In fact, from Nr C T would
follow NN’’-1 Ç T and hence N’’-1 C T in contradiction to the

minimality of r.
COROLLARy. If S’ is a nil-subring of S such that S’2 - S’,

then S’ = 0.
Proof. In fact, from S’T Ç (T, T5) follows S’2 T Ç (S’T, S’TS) = 0.

Further in virtue of S’ 2 - S’ we have S’T == 0, which implies
T C T. Since in general T Ç T, we obtain T = T, and hence (by
the theorem just proved) S’ - T. From S’T = 0 follows S’2 = 0,
q.e.d.

IV. On the structure of a r.h.m.c.-ring.

The proof of the theorems concerning the structure of a

r.h.m.c.-ring which were announced in the introduction follow
now easily from the results obtained in the previous sections.

THEOREM 6. Each r.h.m.c.-ring S possesses a nilpotent radical.
Proof. In fact, let 9t be the radical of S, i.e. the set of all pro-

perly nilpotent elements (see 1, 7) of S, then, as it is well known,
? is a nil-subring (moreover: a nil-ideal) of S. Applying the
minimum condition we deduce from gt D 9î2 ffi3 2 ... the

existence of a positive integer Â such that 9ê 9tz , and hence
ffiÂ = (RÀ)2 which by the corollary to theorem 5 implies ffiÂ = 0,
i.e. 9î is nilpotent.

THEOREM 7. Each potent r.h. ideal 9î of a r.h.m.c.-ring S
possesses a potent element.

Proof. By the minimum condition follows from gî D 9î2-D ffi3 ...
as in the proof of theorem 6 the existence of a positive integer Â
which satisfies the relation (ffiÂ)2 - ffiÂ; suppose .9î*, and hence
also 9îÂ were nil-rings, then by the corollary to theorem 5, 9r’
and hence also 91 were nilpotent, which contradicts the assump-
tion of the theorem.
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THEOREM 8. Each potent r.h. ideal 9î of a r.h.m.c.-ring S
possesses an idempotent element e (i.e. e2=e, e#o).

Proof. By the minimum condition follows the existence of a
primitive r.h. ideal ?’ such that 9î’ C 9î. Let r be a potent element
of ST (theorem 7), then evidently r9î’ = 9î’. The argument which
now leads to the proof of the theorem is exactly the same as that
of theorem 7 in K, we merely have to replace the regular r.h.
ideals of K by the potent r.h. ideals of the present note.

THEOREM 9. If S is a r.h.m.c.-ring, then S is either nilpotent,
or it can be represented as a direct sum of primitive r.h. ideals
and a nilpotent r.h. ideal.

Proof. If S is nilpotent then the theorem is self evident. If S
is potent, then let R1 be a primitive r.h. ideal of S and el an
idempotent element of R1 (theorem 8); then evidently R1 = e15.
If S == ffi1 then the theorem is proved. If 5 :f=. ffi1 then the set
of all elements of the form s - els, where sF- S, is a r.h. ideal

S, which is different from zero and we obtain the representation
S = Si + ?1 (direct sum) where S, C S. If Si is nilpotent then
the theorem is proved: if Si is potent, then by similar argument
we obtain S1 = S2 + ffi2, where ffi2 is a primitive r.h. ideal, S2
is a potent or a nilpotent r.h. ideal and S = S2 + ffi1 + 9Î2,
S D sl D- S2. Hence by the minimum condition ivre finally obtain
the desired representation.
The usual methods lead now from theorems 6 and 9 to
THEOREM 10. Let S be a r.h.m.c.-ring and 9î the nilpotent

radical of S, then the quotient-ring Sj8t is semi-simple.

The further theorems describing the structural type of a

r.h. m.c.-ring can be now obtained exactly as by Artin, and may
be ommitted here.
As a generalisation of the principal theorem of L we finally

state

THEOREM 12. Each nil-subring S’ of a r.h.m.c.-ring S is nil-

potent. If further ni is the index of the radical R of S and l is
the length of the semi-simple ring S/R, then nt + l + 1 is an

upper bound for the indices of the nilpotent subrings of S.

Proof. In fact, let S* be the homomorphic image of S’ in S/ R,
then S* is evidently also a nilring. In L it was proved that each
nil-subring of a ring S which satisfies the minimum and the
maximum condition is nilpotent, and if 1 is the length of S then
l + 1 is an upper bound for the indices of the nilpotent subrings
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of S. Since S/R is semi-simple, ivre may aply the theorem just
stated and find that S*l+1 is zero in S/R, i.e. S"41 C R and
hence (S‘i+1)m - S,(l+l)m - 0, q.e.d. 6)

(Received May 10th, 1939.)

6) The present note was sent for publication in October 1938. In December
1938 a note by Charles Hopkins was published on "Nilrings with minimal condition
for admissible left ideals" (Duke Math. Journ. 4 (1938), 6642013667) in which some
ofthe main results of the present note are proved by a different method. Nevertheless
1 trust that the present note might be still of some interest since the method used
here can be applied also to other interesting classes of rings as 1 hope to show in
a following communication.


