Chain transformations in Mayer chain complexes
Compositio Mathematica, Tome 8 (1951), pp. 251-284.
@article{CM_1951__8__251_0,
     author = {Hu, Sze-Tsen},
     title = {Chain transformations in {Mayer} chain complexes},
     journal = {Compositio Mathematica},
     pages = {251--284},
     publisher = {Kraus Reprint},
     volume = {8},
     year = {1951},
     mrnumber = {39998},
     zbl = {0042.17001},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1951__8__251_0/}
}
TY  - JOUR
AU  - Hu, Sze-Tsen
TI  - Chain transformations in Mayer chain complexes
JO  - Compositio Mathematica
PY  - 1951
SP  - 251
EP  - 284
VL  - 8
PB  - Kraus Reprint
UR  - http://archive.numdam.org/item/CM_1951__8__251_0/
LA  - en
ID  - CM_1951__8__251_0
ER  - 
%0 Journal Article
%A Hu, Sze-Tsen
%T Chain transformations in Mayer chain complexes
%J Compositio Mathematica
%D 1951
%P 251-284
%V 8
%I Kraus Reprint
%U http://archive.numdam.org/item/CM_1951__8__251_0/
%G en
%F CM_1951__8__251_0
Hu, Sze-Tsen. Chain transformations in Mayer chain complexes. Compositio Mathematica, Tome 8 (1951), pp. 251-284. http://archive.numdam.org/item/CM_1951__8__251_0/

Eilenberg, S. [1] Homology of spaces with operators, Trans. Amer. Math. Soc., 61 (1947), 378-417. | Zbl

Eilenberg, S., and Maclane, S. [2] Homology of spaces with operators II, Trans. Amer. Math. Soc., 65 (1949), 49-99. | MR | Zbl

Hopf, H. [3] Die Klassen der Abbildungen der n-dimensionalen Polyeder auf die n-dimensionalen Sphäre, Comment. Math. Helv., 5 (1933), 39-54. | JFM | Zbl

Hu, S.T. [4] Extension and classification of the mappings of finite complex into a topological group or an n-sphere, Annals of Math., 50 (1949), 158-173. | Zbl

Kelly, J.L., and Pitcher, E. [5) Exact homomorphism sequences in homology theory, Annals of Math., 48(1947), 682-709. | Zbl

Steenrod, N.E. [6] Products of cocycles and extensions of mappings, Annals of Math., 48 (1947), 290-820. | MR | Zbl

Whitney, H. [7] The maps of an n-complex into an n-sphere, Duke Math. Joum. 8 (1937), 51-55. | JFM | MR | Zbl