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Higher-Dimensional field Theory
II. Linear Systems

by

E. Snapper

Conventions.

We continue the conventions of [1] (referred to as FI), whose
introduction contains a short introduction to the present paper.
(Square brackets refer to the références.) In particular, E/F is
a finitely generated field extension and "module" always means
"finitely generated module." We further introduce the following
conventions. Since all fields which occur in this paper contain F,
"degree of transcendency" always means "degree of transcen-
dency with respect to F as groundfield." The, necessarily finite,
degree of transcendency of E is denoted by r. We indicate by E’
the set of nonzero elements of E and use this same notation for

any subset of any field; for example, if M is a module of E, we
indicate by M’ the set of nonzero elements of this module. We
denote by VB the nontrivial valuation of E whose valuation ring
is B. Hence, B ~ E and if e E E’, VB (e ) belongs to the value group
of VB ; of course, VB(0) = oo where the symbol oo is handled in
the usual way, and VB(e) ~ 0 if and only if e E B. It is always
assumed that F c B, i.e. that when c E F’, VB(c) = 0. Observe
that such a valuation Fg can not exist when r = 0 and we con-
sequently always assume that r ~ 1. The unique maximal ideal of
B is denoted by 03B2 and is called the place of Fg or B; of course,
any one of the three concepts VB , B, 03B2 determines the other two.
The degree of transcendency of the residueclass field B/03B2 is, as

customary, called the dimension of Fg and we know that it can
not exceed r-1; on the other hand, we should be careful to note
that B/03B2 may not be finitely generated over F.

Several remarks have been added to show briefly how the ter-
minology and conventions tie in with the underlying geometry.
These remarks do not form a part of the logical development of
our field theory and are meant only for those readers who know
the theory of algebraic varieties.
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1. The divisors of the f irst kind of a projective class of modules.
If N is a nonzero module of E, the modules (1/a)N where a E N’,
already played a role in sections 4 to 6 of FI. The nonempty
class C of proportional modules which arises in this way from
N, clearly satisfies the following two conditions:
(1) When M E C, 1 ~ M and (2) When M ~ C and a E M’, (1/a)M ~ C.
Conversely, any nonempty class C of proportional modules of E,
satisfying these two conditions, can be considered as to consist
of al] the modules ( 1 /a )M, where a E M’ for any fixed module
M of C. Although other arrangements are possible, the author
feels that it is best to associate the notion of "divisor of the first
kind" with such a class of modules. This makes the following
definition convenient.
DEFINITION 1.1. A nonempty class o f proportional modules o f E

which satisfies the above Two conditions is called a projective class
o f modules.
REMARK 1.1. Let yo, ..., yn be the homogeneous coordinates of

a generic point of an irreducible algebraic variety S, defined over
F as groundfield and with E as field of rational functions. By
choosing planes, not containing S, as planes at infinity, we obtain
the different affine models of S. Each such model has a generic
point with coordinates y0/a,..., yj-1/a, y,+lla, - .., y.la, where a
is any nonzero element coyo + ... + cnyn of the module N which
is generated by Yo,..., yn; this module belongs to the field

E(y0,..., yn), while co, ..., cn belong to F and c, ~ 0. Since
furthermore yk/a E E, for k = 0, ..., n, the module (1/a)N belongs
to .E and we see immediately that (1/a)N = (yo/a, ..., yj-1/a,
yj+1|a,..., ynla, 1). This shows that the modules (yo/a, ..., yj-1/a,
y,+lla, yn/a, 1) of E which are generated by 1 together with
the coordinates y0/a,..., yj-1|a, y,+lla, . - ., yn/a of the generic
points of the different affine models of S, form a projective class
of modules. This projective class of modules gives us the same
information about the underlying algebraic variety S as a projec-
tive model of S, which is the reason why we can study linear
systems in terms of projective classes of modules. Observe that
we did not require in definition 1.1 that F(M) = E, when M
belongs to the class, and hence we are actually dealing with the
rational images of S.

Let C be a projective class of modules of E. It is evident that
the field F(M), where M E C, does not depend on the choice of
M E C. We call this field the field of C and denote it by F(C);
actually, this notation needs no explanation, since the ordinary
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field adjunction to F of all the elements which occur in the dif-
ferent modules of C results exactly in the field of C. The, neces-
sarily finite, degree of transcendency of F(C) is called the dimen-
sion of C.

Let VB be a valuation of E with place 13 and let HB denote the
natural homomorphism from B onto B/03B2 = HB(B). If N is any
module of E, the minimum value VB(a), where a ~ N, is well

defined, since N is finitely generated, and we denote it by VB(N).
Clearly, for some a EN’, (1/a)N ~ B if and only if VB(a) = VB(N).
This shows in particular that C contains a nonelnpty subset CB
which consists of those modules of C which happen to lie in B.
Every M E CB is mapped by HB on a module HB(M) of the
field HB(B) and we denote this set of modules by HB(CB).
STATEMENT 1.1. The set of modules HB(CB) is a projective class

of modules of the field HB(B).
PROOF. It is clear that 1 E HB(M) for every M E CB. Hence all

we have to show is that if M E CB and a is a nonzero element of
HB(M), then (1/a)HB(M)~HB(CB). The fact that a is a non-

zero element of HB(M) means that there exists an element

e E M, ,vhich is a unit of B, and which is such that HB(e) = a.
It follows that ( 1 /e )M belongs to CB, and not just to C, and hence
that (1/a)HB(M)~HB(CB); done.
We call the. projective class of modules HB(CB) the center of

VB on C. In order to investigate this center further, let d be the
dimension of C, let M ~ CB and let A be the algebraic closure of
the field F(M) in E; then F[M] belongs to the valuation ring
F(M) fl B of F(M). The ordinary integral closure F~M~ of the
ring F[M] in E is the integral closure in A of that same ring and
hence both F[M] and F~M~ belong to the valuation ring A fl B
of A. Consequently, HB(F[M]) ~ HB(F(M) ~ B) e HB(A ~ B)
and HB(F[MJ) e HB(F~M~) ~ HB(A ~ B); both HB(F(M) ~ B)
and HB(A ~ B ) are fields, while the first field already contains
the modules of the center HB(CB). If A - B, the valuation ring
A fl B is the trivial one and the contraction of HB on A is then
an isomorphism; of course, A e B if and only if F(M) e B. If
A qr B, the degree of transcendency of the fields HB(F(M) ~ B)
and HB (A ~ B) is at most d-1.

STATEMENT 1.2. Il A ~ B, the center HB(CB) of VB on C is C
itself; i f A 1-- B, the dimen.sion of this center is at most d -1. In
both cases, the field of quotients of the ring HB(F~M~) i.s a finite
algebraic extension of the field of this center.

PROOF. The modules of C all belong to F(M) and hence, if
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A ~ B, CB = C; since furthermore the contraction of HB on A
is then an isomorphism, we can consider HB(CB ) as identical
with C. If A ~ B, we conclude from the fact that the field of

HB(CB) is contained in HB(F(M)~B), that the dimension of
HB(CB) is at most d-1. Concerning the last sentence of state-
ment 1.2, we have to be careful, since the field HB(A~ B ) may
not be finitely generated over F. However, since A/F(M) is a
finite algebraic field extension, F~M~ is a finitely generated mo-
dule over F [M] (See FI, section 1), and consequently HB(F~M~)
is a finitely generated module over HB(F[M]). We conclude that
HB(F~M~) = F[a1, ..., am], where al, ..., am are integral over
the ring HB(F[M]). Consequently, the field of quotients of

HB(F~M~) is F(a1, ..., am ), were al, ..., am are algebraic over
the field of quotients of HB(F[M]); since this last field of quotients
is exactly the field of the center HB(CB), we are done.
REMARK 1.2. Let the irreducible algebraic variety S be as in

remark 1.1 and let C be the projective class of modules

(y0/a,..., yj-1/a, yj+1/a,..., y.la, 1), which arises from the affine
models of S. When VB is a valuation of E, our definition of the
center of VB on C is the exact field-theoretic equivalent of the
customary definition of the center of VB on S. In the theory of
algebraic varieties, the center of a valuation of E on a rational
image of S, which is not a birational image of .S, is usually not
explicitly defined, but there is of course no reason not to use the
same definition of center for the rational images of ,S as for its
birational images. We found it expedient to do this in our field-
theoretic approach because, as a result, we won’t have to restrict
ourselves in theorem 6.2 to linear systems whose associated
rational transformation of S leaves the dimension of S unchanged.
Exactly the same remarks are valid with respect to our definition
of "divisors of the first kind."

In the sequel, the projective classes C of dimension d = 0
will often be somewhat exceptional. The reason is that the following
three statement.s. are equivalent: (1) the elements of the module M
of E are all algebraic over F; (2) F[M] is a field; (3) F~M~ is a
field. Namely, we know from FI, section 1, that not only F[M]
but als F~M~ has a finite number of ring gcnerators over F
(i.e., F~M~ = F[al, ..., un], where a1,..., an ~ F~M~). ’J’he

equivalence of these threc statcments now follows immediately
from the fact that a ring with a finite number of ring gcncrators
over a field F is itself a field if and only if all thesc gcncrators
are algebraic over F (see theorem 2 of [2]). When all the elcments
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of M are algebraic over F, we say that M is algebraic over F;
in that case, F[M] = F(M) and F~M~ is the algebraic closure
F* of F in E. Now, if F [M] and hence F(M) are not fields, the
minimal prime ideals of these rings are defined as usual; in par-
ticular, a prime ideal of one of these rings is then minimal, if
and only if residuation with respect to that ideal diminishes the
degree of transcendency of that ring by 1. The notion of minimal
prime ideal is meaningless for fields and this is why it is often

best to treat the 0-dimensional projective classes, i.e. the classes
whose modules are algebraic over F, separately from the others.
A valuation VB of E is, as customary, called a divisor when its

dimension is r-1. We know that in that case the field B/03B2 is

finitely generated over F.
DEFINITION 1.2. Let C be a projective class of dimension d~1,

consisting of modules of E, and let VB be a divisor of E. Then, VB
is called a divisor of the first kind of C, i f the dimension of its center
on C is d -1.

If C is a 0-dimensional projective class, no definition of "divisor
of the first kind" is made; in that case, the dimension of the center
of any valuation Fp on C is 0, since this center is then C itself.

Let VB be a divisor of the first kind of C. Let d, M, F~M~,
A, HB, CB all have the same meaning as in statement 1.2, where
d &#x3E; 1. We conclude from this statement that A 4I B and see further
that the degree of transcendency of both fields HB(F(M) ~ B)
and HB(A fl B ) is necessarily d -1. In other words, the valuations
induced by VB in A and in F(M) are divisors of these fields; of

course, these induced valuations may be divisors without Fg
being of the first kind for C. Precisely, the requirement that
TlB be of the first kind for C requests that the degree of transcen-
dency of the ring HB(F[MJ) be d-1. We see from statement
1.2 that the integral domains HB(F[M]) and HB(F~M~) have
the same degree of transcendency and hence the following state-
ment is clearly correct.
STATEMENT 1.3. Let C be a projective class o f dimension d &#x3E; 1,

consisting of modules of E, and let VB be a divisor of E with place
13. We choose any M E CB and denote the prime ideals F[M] ~ 03B2
and F~M~ r) 13 by respectively q and p. Then, the following three
statements are equivalent: (1) VB is a divisor of the first kind for
C; (2) q is a minimal prime ideal of F[M]; (3) p is a minimal
prime ideal of F~M~.

If C is a 0-dimensional projective class and VB any valuation
of E, the ideals q and p of statement 1.3 are always the 0-ideals
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of respectively the fields F[M] = F(M) and F(M) = F*.
We now return to a projective class C of dimension d ~ 1 and

a valuation VB of E with place 03B2; we choose an M E CB and study
the ideal p = F~M~ ~ 03B2. Clearly, (F~M~)p~ A ~ B, were
(F~M~)p denotes the ring of quotients of F~M~ which consists
of the quotients a/b, where a, b E F~M~ and b ~ p. Since F~M~
is the integral closure in A of the ring F[M], A is the field of

quotients of F(M), and F~M~ is integrally closed and Noetherian.
Consequently, if p is a minimal prime ideal of F~M~, the ring
(F~M~)p is a valuation ring of A, whose associated valuation is
a divisor of A, and this ring is not contained in any other proper
subring of A. We conclude that, if V. is a divisor of the first

kind of C, (F~M~)p = A n B and hence that HB(A ~ B) is then

the field of quotients of the ring HB(F~M~). It is now clear that
the following statement is correct.

STATEMENT 1.4. Il C is a projective class of dimension d ~ 1,
consisting of modules of E, we find all its divisors of the first kind
as follows. For each M E C, construct all rings o f quotients (F~M~)p,
where p runs through all the minimal prime ideals of F~M~. Each
such ring of quotients is a valuation ring of A whose associated
valuation is a divisor of A. Extend each of these divisors in all
possible ways to divisors of E, and all the divisors of the first kind
of C have been found. Il VB is a divisor of the first kind of C, the
field HB(A fl B) is, according to statement 1.2, a finite algebraic
extension of the field of the center of VB on C.

In order to get all the divisors of the first kind of C, we can
obviousiy restrict the construction of statement 1.4 to a subset
Co of C which has the property expressed in the following defini-
tion.

DEFINITION 1.3. A subset Co o f a projective class C o f modules
of E is said to cover C i f , for any valuation VB of E, B contains
at least one module of Co.
For example, C covers C and, if M E C where M = (al, ..., am)

and each aj ~ 0, the finite set of modules (1/a1)M, ..., (1/am)M
covers C; we can see from statement 1.5 that, even if the genera-
tors a1, ..., am of M are linearly independent, a proper subset of
these m modules (1/aj)M may already cover C. (See FIII, state-
ment 1.2, for another characterization of a covering Co of C.)

Let Ci’ ..., Ch be h projective classes of modules of E. The
products M1·...· Mh, where Mj~Cj for j = 1, ..., h, clearly
all belong to one and the same projective class of modules of E.
This class is called the product of the classes Cl, ..., Ch and is
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denoted by C1·...·Ch. The products M1·...·Mh, where

Mj E C ;, do not necessarily exhaust the modules of C1·...·Ch ,
but they clearly cover C1 ..... Ch’ In general, when the subset
cg) of Cj covers Cj for j = 1, ..., h, the products Ml ..... Mh,
where Mj E C(j)0, cover C1 ..... Ch. This multiplication of projec-
tive classes is obviously commutative and associative and, con-
sequently, the powers Ch, for h~0, are well defined; of course,
CO consists of the modules M° where M E C, i.e. according to our
convention that M° = F, CO is the projective class which consists
of F only. We see immediately that the field F(C1 ..... Ch) of
the product class C1· ..... Ch is the compositum of the fields
F(Cj) of the individual classes Cl, ..., Ch.
STATEMENT 1.5. Let C be a projective class o f modules o f E.

Then, when h~1, the field of C h is the same as the field of C. I f
the set of modules {Mj} covers C, the set of Modules {Mhj} covers C h,
for h~0; here, the set {Mj} can have any cardinality. Il dim (C) &#x3E; 1

and h~1, Ch and C have the same sets of divisors of the first kind.

PROOF. The field F(Ch) of C h is the compositum of the field
F(C) of C, h times with itself, if h~1; hence then F(Ch)=F(C).
Let the set of modules {Mj} cover C; then Mi E C and hence
certainly, Mhj ~ Ch for each M,,E {Mj}. Furthermore, if VB is a

valuation of E, M - B for some Mi E {Mj}, and hence Mhj ~ B;
this shows that the set of modules 1 Mhl covers C h when h~0.
It now follows from statement 1.4 that, when dim (C)~1 and
h~1, we obtain the divisors of the first kind of C from the minimal

prime ideals of the rings F~Mj~ and those of Ch from the minimal
prime ideals of the rings F~Mhj~, where M,,E {Mj}. Since 1 ~ Mj,
clearly F[Mj] = F[Mhj] and hence certainly F~Mj~ = F~Mhj~,
and we are done.

REMARK 1.3. If the projective class Cj arises, as in remark 1.1,
from the affine models of an irreducible algebraic variety Sj,
the product class ClC2 arises in the same way from the affine
models of the graph of the algebraic correspondence between S,
and S2.
We like to point out that Krull discusses a field-theoretic

definition of divisor of the first kind in section 50 of [3]. We did
not make use of Krull’s definition, because it is easy to construct
an algebraic variety whose set of divisors of the first kind does
not fall under his definition. Precisely, from geometric point of
view, Krull restricts himself to a very special kind of algebraic
variety.
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2. Extension of divisors. In order to discuss the connection
between the notions of "divisors of the first kind of a projective
class of modules" and of "integral closure of a module" we need
some results concerning extensions of divisors.
We denote by H an intermediate field of our field extension

E/F, i.e. F ~ H ~ E, and by s the degree of transcendency of
E/H; consequently, r-s is the degree of transcendency of H/F.
We assume that s~1 and that the element e of E is transcendental
over H. Let W be a valuation of H/F (i.e. W induces the trivial
valuation on F), which is either a divisor of H/F or is the trivial
valuation of H; of course, the first case can only occur if s  r.

STATEMENT 2.1. W can be extended to a divisor VB of E in such
a way that e f B.
PROOF. Case 1. W is a divisor of HIF. We choose an element

k E H’ such that W(k) &#x3E; 0; this can be done since W is not the
trivial valuation of H. We then choose elements t2, ..., ts in E,
such that ke = tl, t2, ..., ts is a transcendence base for E/H. For
each polynomial f(t1, ..., ts) ~ H[t1, ..., ts], we define that

W*(f(t1, ..., ts ) ) is the minimum of W(c), where c runs through
all the coefficients of f(t1, ..., ts ). When f, g E H[t1, ..., ts] and
g ~ 0, we define that W*(f/g) = W*(f)-W*(g) and so obtain
a valuation of the field H(tl, ..., ts); for a proof, see [4], pages
134-137. It is clear that W* is an extension of W and we now
show that W * is a divisor of H(t1, ..., ts). Hereto, let BI, 03B21 be
the valuation ring and place of W and B2, 03B22 those of W* ; when
b E B2, we denote by b the image of b under the natural homo-
morphism from B2 onto B2/03B22. All we have to show is that
the elements 11, ..., ls of B2/03B22 are algebraically independent
over B1/03B21. If 03A3ai1...is ti11 ... tiss = 0 where ai1...is E B1/03B21, then

W*(03A3ai1...is ti11...tiss) &#x3E; 0 where ai1... i. E BI; the definition of
W * implies that actually each ai1...is ~ 03B21 and hence that each
ai1...is = 0, which proves that 11, ..., I., are algebraically in-

dependent over B1/03B21. We now extend W* to a valuation VB
of E. Clearly, VB is a divisor of E and VB(e) - W*(e) =
W*((1/k)t1)  0 and case 1 is finished.
CASE 2. W is the trivial valuation of H. Consider the minimal

prime ideal p = ( 1 /e ) of the ring H[Ile]. The ring of quotients
(H[1/e])p is a valuation ring of the field H(e) whose associated
valuation is a divisor W 1 of H(e). We extend W 1 to any divisor
VB of E, using the technique of case 1; clearly, VB(e)  0 and

VB is an extension of W and hence we are done.
Let M be a module of E which is not algebraic over F and let
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F[M], F~M~, A, etc. have the same meanings as in section 1.

We denote by {VBu} the set of divisors of E which have the fol-
lowing two porperties: (1) Me Bu ; (2) qu = F[M] fl 13. is a

minimal prime ideal of F[M]. We know that property (2) is

equivalent with property (2’): -Pu = F~M~ n 13. is a minimal

prime ideal of F~M~.
STATEMENT 2.2. ~ Bu = F~M~.

u

PROOF. Since each Bu is integrally closed in E, all we have to
show is that ~ Bu c: F~M~. Hereto, let e be an element of E

u

which does not belong to F~M~; we have to prove that there
exists a B in the set {Bu} which does not contain e. We assume
first that e f. A. In this case, we choose any minimal prime ideal
p of F~M~ and consider the divisor W of A whose valuation ring
is the ring of quotients (F~M~)p. Since e is transcendental over
A, we conclude from statement 2.1 that W can be extended to
a divisor VB of E which is such that e f. B; clearly, F~M~ fl 03B2 = p
and hence B E {Bu}. If e E A, we choose a minimal prime idéal p
in F(M) in such a way that e ~ (F~M~)p; this can be done since
F~M~ = ~ (F~M~)p, where p runs through the minimal prime
ideals of F~M~. We then extend the divisor of A whose valuation
ring is (F~M~)p to any divisor VB of E; clearly, e f. B and, since
F~M~ ~ 03B2 = ,p, B £ {Bu}.

If M is algebraic over F, F~M~ = F* and every divisor VB
of E has the property that Mc B; we also know that the ideals
q = F[M] ~ 03B2 and p = F~M~ ~ 03B2 are then 0-ideals. It is indeed
true that, if {VBt} denotes the set of all the divisors of E, F* = rl Bt.
Again, all we have to show is that, if e is an element of E which
does not belong to F*, there exists a B in the set {Bt} which does
not contain e. This however follows from the fact that, according
to statement 2.1, the trivial valuation of F* can be extended
to a divisor VB of E in such a way that e f. B. We will see in
statement 2.3 that the equality F* = ~ Bt is valid for much

smaller sets of divisors than the set {VBt} just used.
We will use statement 2.2 in the following form.
STATEMENT 2.3. Let C be a projective class of modules of E, where

dim(C) ~ 1, and let M E C. We denote by {VBu} the set of divisors
of the first kind of C which have the property that M c Bu. Then
n Bu = F(M). Il {VBt} denotes the set of all divisors of the first
kind o f C, n Et = F*.

PROOF. According to statement 1.3, the sets of divisors {VBu}
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of statements 2.2 and 2.3 coincide, and hence ~ Bu = F~M~.
u

It follows that r1 B, = ~ F(M;), where M; runs through all

the modules of C. Now Mj = (1/aj)M, for some aj ~ M’, and
consequently, ~ B, = ~ F~(1/aj)M~, where aj runs through the
elements of M’. When we apply statement 5.2 of FI for the case
h = 0, we see that ~ F~(1/aj)M~ = F* and we are done.

3. The connection between the integral closure of a module and
the divisors of the first kind of a projective class. Let B be any
nonempty set of valuations VB of E and M a module of E. We
denote by |M;B| the subset of E which consists of those elements
e E E which have the property that VB(e) ~ VB(M) for all

VB ~ B. . Obviously, M- |M; B| and |M;B| is a subgroup of the
additive group of E which is closed under multiplication by
elements of F* and hence certainly under multiplication by
elements of F; we can only call |M;B| a module, when B is so
large that the additive group |M;B| has a finite number of
generators over F. It is clear that, for any ae E, |aM;B|=a|M;B|.
We denote by R(M;B) the ring which is the intersection of all
those valuation rings B which satisfy the following two properties :
(1 ) VB ~ B; (2) Afc=B; following the usual conventions of set
theory, R(M;B) = E if no such valuation ring B exists. Clearly,
F[MJ c R(M;B) and hence, since R(M;B) is integrally closed
in E, F~M~ ~ R(M;B). Again |M|i denotes the integral closure
of M in E.

STATEMENT 3.1. 1 M |M;B| ~ R(M;B).
PROOF. If e ~ |M|i, there exists a nonzero module L such that

eL ~ LM. We conclude that for any valuation Fp of E,
VB(e)+VB(L)~VB(L)+VB(M) and hence, since VB(L) =1- 00,
that VB(e) ~ VB(M); this shows that |M|i c: |M;B|. Now suppose
that e ~ |M;B| and that the valuation ring B is such that M ~ B
and VB ~ B. Then, VB(e) ~ VB(M) ~ 0 and hence e E B, and we
are done.

When M is a nonzero module of E, we denote by C(M) the
projective class which consists of the modules (1/a)M, where
a~M’. The valuation-theoretic characterization of |M|i, men-
tioned in section 5 of FI, is the following.
STATEMENT 3.2. Let M be a nonzero module of E, where

dim(C(M)) ~ 1. Then, if B denotes the set o f divisors of the first
kind o f C(M), |M|i = |M;B|.

PROOF. All we have to prove, according to statement 3.1, is
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that |M;B| ~ 1 MI . We know from FI, statement 5.2, that

IMli = ~ aF~(1/a)M~, where a runs through the set M’ of

nonzero elements of M. Hence we assume that e ~ |M;B| and
that a E M’, and we prove that then e E aF~(1/a)M~. Now, since
e ~ |M; B|, e/a ~ |(1/a)M; B| ~ R((1/a)M;B). We conclude from
statement 2.3 that R((1/a)M; B) = F~(1/a)M)~ and we are done.

If M is a nonzero module of E and dim(C(M)) = 0, then for
any a E M’, F ~ (1/a)M ~ F* ; hence |(1/a)M|i = F*, from which
we conclude that |M|i = aF*. In that case, if 35 denotes the set
of all the divisors VB of E, we see from the observation made after
the proof of statement 2.2, that also |((1/a)M; B| = F* and hence
|M|i = |M; B| = aF*. Finally, if M = 0 and 35 is any nonempty
set of valuations TlB of E, |M|i = |M; B| = 0.

It follows immediately from statement 3.2 that, if ? denotes
the set of all valuations of E, 1 M == |M; B| for any module M
whatsoever.

For the theory of linear systems we need the following generali-
zation of statement 3.2.

THEOREM 3.1. Let M be a nonzero module of E and B the set
of divisors of the first kind of the class C(M), where dim (C(M)) ~1.
Let M be any set of valuations TlB of E, where B ~ M. Then, for
h~0, IMhli = |Mh; Ul_

PROOF. Again, all we have to show is that |Mh; BB| ~ |Mh|i.
If a~M’, ah~Mh and (llah)Mh E C(Mh); since (1/ah)Mh= ( (1/a)M)h,
we see that C(Mh)=(C(M))h. It now follows from statement 1.5
that, if h ~ 1, S is also the set of divisors of the first kind of the
class C(Mh). Hence we conclude from statement 3.2 that

|Mh|i = |Mh; B|, while |Mh; BB| ~ |Mh; B| follows from B ~ BB;
our theorem is now proved for h &#x3E; 1. If h = 0, |M0|i = 1 F/i = F*,
while |F; BB| = ~ Bu where V B runs through all the valuations
of 38. It follows that ~ Bu ~ ~ B t , where VBt runs only through
the valuations of B. We know from statement 2.3 that already
~ Bt = F*, and hence |F; BB| = F*; our theorem is now com-t

pletely proved.
In the applications, SB will usually be the set of divisors of

the first kind of some other projective class C of modules of E,
where dim (C)~1. Of course, we may choose ID3 = 35.
The following material is needed for the next two sections and

for FIII.
Let C be a projective class of modules of E. It is clear that the

modules |M|i, where M E C, all belong to one and the same pro-
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jective class of modules of E; this class is denoted by |C|i. The
analogue of statement 1.5 is the following.
STATEMENT 3.3. Lèt C be a projective class of modules of E. The

field of 1 CI, has the same algebraic closure A in E as the field F(C)
of C. Il the set of modules {Mj} covers C, the set of modules {| Mj|i}
covers |C|i; here, the set {Mj} can have any cardinality. Il dim(C)~1,
|C|i s and C have the same sets of divisors of the first kind.
PROOF. If M e C, F(M) = F(C) and F(|M|i) is the field of

i. Since |M|i ~ F~M~, F~|M|i~ ~ F~M~; we conclude from
FI, statement 5.1 and remark 5.1, that F~M~ = Û IM81i and

8=0

hence that F~|M|i~ = F~M~. This proves the first sentence of
statement 3.3. If the set {Mj} covers C, obviously the set {|Mj|i}
is a subset of |C|i. Furthermore, if VB is a valuation of E, Mj ~ B
for some Mj ~ {Mj}. This implies that |Mj |i ~ B, since

|Mj|i ~ F~Mj~ ~ B, and hence the set {|Mj|i} covers |C|i. Finally,
if dim(C)~1, the divisors of the first kind of C arise from the
minimal prime ideals of F~Mj~ and those of |C|i from the minimal
prime ideals of F~|Mj|i~, where Mj E {Mj}. We saw above that
F~|Mj|i~ = F~Mj~ and hence we are done.
We can now prove the following corollary of theorem 3.1.
STATEMENT 3.4. Let M, B, C, BB be as in theorem 3.1. Then,

for h~0, |Mh|i = ||Mh|i; BB|.
PROOF. If a ~ M’, ah ~ Mh ~ |Mh|i and hence

(1/ah)|Mh|i ~ C(|Mh|i). Furthermore, (l/ah)IMhli = 1(l/a)M)hli
and consequently, C(IMhli) = |(C(M))h|i. We now conclude
from statements 1.5 and 3.3 that ? is also the set of divisors
of the first kind of the class C(N), where N = |Mh|i, if h~1.
Theorem 3.1 then implies that |N|i = |N; BB| and since

IIMhlili = |Mh|i, we are done for h~1. When h = 0, we have
again that |M0|i = F* and that ||M0|i; VI = F*, and the
statement is completely proved.

4. The (r-1)-dimensional cycles of an r-dimensional projective
class of modules. In the remainder of this paper, C denotes a f ixed,
projective class of modules of E, where dim(C) = r. Consequently,
continuing the notations of the previous sections, A = E and,
when M e C, E is the field of quotients of F~M~. We denote
6y ? the set of divisors of the first kind of C. We are going to
study the linear systems which arise from this f ixed set of divisors B;
all our notions as zero, pole, zero-cycle, pole-cycle, linear equiv-
alence, linear system, etc. are relative notions and depend on
the choice of B.
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REMARK 4.1. We only postulated that E is an algebraic ex-
tension of the field F(C) or our class C and not that E = F(C).
Hence, if S is again an algebraic variety which is defined over F
as groundfield and whose field of rational functions is E, we are
studying the linear systems inside E which arise from an algebraic
variety S*, where S* is a rational transform of S which has the
same dimension as S. The only reason for not insisting upon
F(C) = E, is that we won’t have an opportunity to profit from
this further restriction.
We will base our proof of the existence of complete linear

systems on the following statement.
STATEMENT 4.1. Il N is a module of E, |N; B| has a finite

number of generators over F; i.e., lN; 581 | is a module.

PROOF. Let N = (e1, ..., en ). If M E C, E is the field of quotients
of F~M~ and hence ej = a;/b;, where a; , bj ~ F~M~ and b; =1=- 0
for i = 1, ..., n; consequently, bN ~ F~M~, where b = b1 · ..... bn.
We then conclude from FI, statement 5.1 and remark 5.1, that
bN ~ |Mh|i for large enough h. This implies that |bN; B| ~ 1 IMh Ji; B|
and, using statement 3.4 with M = B, that IbN; 581 c |Mh|i.
Since b =1=- 0, it follows that lN; 581 c (1/b)|Mh|i Z and the finite
dimensionality of (1/b)|Mh|i tells us that lN; 58/ is finite dimen-
sional.
The author does not know whether statement 4.1 remains valid

when the condition that dim (C) = r is dropped, and is replace
by merely dim (C) ~ 1.

In order to define zeros a.nd poles of elements of E’, we add
to our conventions that, when VB is a divisor of E, VB(e) = 1
for at least one e E E’. When e E E’ and TlB E B, we say that VB
is a zero of e of order m i f VB(e) = m &#x3E; 0 and that VB is a pole
of e of order n i f VB (e) = n  0; observe that zeros and poles are
defined only with respect to divisors of 58.
STATEMENT 4.2 Let e E E’. Then e has at most a finite number

of zeros and a finite number of poles. The following three statements
are equivalent: (1) e has no zeros; (2) e has no poles; (3) e E F*.

PROOF. Let M E C and let {VBu} denote the set of divisors of
B which have the property that M c: Bu; we begin by showing
that e has at most a finite number of zeros in the set {VBu}.
Hereto, we assume that VB E {VBu} and that Fg is a zero of e,
and we choose two nonzero éléments a, b E F~M~ which are such
that e = a/b. Then, VB(e) = VB(a) - VB(b) &#x3E; 0 and VB(b) ~ 0,
and hence VB(a) &#x3E; 0. Consequently, a belongs to the minimal
prime ideal p = F~M~ ~ 03B2 of F~M~. Since B = (F~M~)p is
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completely determined by p and a is contained in only a finite
number of minimal prime ideals of F~M~, e can indeed have at
most a finite number of zeros in the set {VBu}. We now apply
this remark to each module of a finite set of modules M1, ..., Mn
of C which cover C (see section 1), and we conclude immediately
that e can have at most a finite number of zeros. In particular,
this is true for 1 /e, and hence e can also have at most a finite
number of poles. Furthermore, e has no poles if and only if

e E rl Bt , where Bt runs through the valuation rings of all the
divisors of B. Since rl Bt = F* (see statement 2.3), we see

that (2) and (3) of statement 4.1 are equivalent. Finally, e has
no zeros if and only if 1/e has no poles, and hence (1) and (3)
are also equivalent, and we are done.

It follows immediately from the methods of section 2 that
statement 4.2 is false if the condition that dim(C) - r is dropped.
We now consider the additive group Ci of the finite, integral,

linear combinations of the elements of B. The precise construc-
tion of OE is a routine matter and an element G E OE can be written
as G = n1 VBl + ... + nsVBs, where VB ~ B and nj is a rational
integer for j = 1, ..., s; the 0-element of  is denoted by 0.
We consider S as a subset of 0, i.e. we identify the divisor Fp
of B with the linear combination 1VB . We call the elements of 
the (r -1 )-dimensional cycles of C and we refer to  as the (r -1 )-
dimensional cycle group of C. Hence the divisors of B are a special
kind of (r-1)-dimensional cycles of C. Since in this paper and
in FIII all cycles which occur have dimension r -1, whenever we
say ’..’cycle", we always mean "(r-1)-dimensional cycle."

REMARK 4.2. Of course, by now, the usual fight is on. Should
we perhaps have written  multiplicatively instead of additively?
Since the reasonings of these papers come from geometry rather
than from number theory, the author has chosen the additive
notation. In this connection, Professor Zariski has pointed out
that, if one uses the additive notation, it is better to use the
terrn "(r-1 )-dimensional cycle" then "divisor", since the latter
term definitely reminds one of a multiplicative theory. This
then is the reason why we do not refer to the elements of Ci
as the divisors of C. Those readers who prefer to write Q) multi-
plicatively would probably rather use thé place 13 of Fp in their
notation, and they would write 03B2n11·...· fll§/8 when we write
n1VB1 + ... + n, VB».
When Gl, G2 E , we say that G1 ~ G2 when, for each VB E B,
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the coefficient of Fp in G, does not exceed the coefficient of Fp
in G2; of course, G1G2 means that G1~G2 and G1~G2. The
relation  makes  into a partially ordered group; when 0~G,
we say that G is nonnegative, and when OG that G is positive.
When G, and G2 are positive cycles and Fp of B occurs in both
cycles with positive coefficient, we say that "Gl and G2 have
Fp in common." When G ~ 0, we can split this cycle in the ob-
vious way into two positive cycles G = Z- P, where Z and P
have no divisor in common; we refer to these uniquely determined
cycles Z and P as respectively the zero-cycle and pole-cycle of G.

Let M be a nonzero module of E. We conclude immediately
from statement 4.2 that, when VB ~ B, VB(M) = 0 except for

at most a finite number of divisors of B. Consequently, the sum
1 VB(M)VB, where VB runs through all the divisors of B, is a

cycle of C and we call it the cycle G(M) o f M. Statement 4.2 also
shows that G(M) = 0 if and only if M is algebraic over F.
When M is not algebraic over F, we call the zero-cycle and pole-
cycle of G ( M ) respectively the zero-cycle Z(M) and pole-cycle P(M)
of M; hence G(M) = Z(M)-P(M). If M = (e), the cycle, zero-
cycle and pole-cycle of M are also called the cycle G(e), zero-
cycle Z(e) and pol e-cycle P(e) of e.
Of course, not every cycle G is the cycle G(M) of some non-

zero module M of E (see statement 6.1).
STATEMENT 4.3. Il G is a cycle of C, there always exists a non-

negative cycle Go of C and a nonzero module M of E, such that
G+G0 = -G(M).
PROOF. Case 1. G is a divisor VB ~ B. Let e be a nonzero element

of the place 13 of VB and consider the module M = ( 1 /e, 1).
Clearly, Z(e) = -G(M) and since Z(e»G, we are done.
CASE 2. G is nonnegative, say G = n 1VB., + ... + ns VB where

each nj~0. Let the nonzero modules Mi, ..., Ms be such that

VBj + GÔi) = -G(M,) and G(j)0 ~ 0, for j = 1, ..., s. Then,
-G(Mn11 ·...· Mnss) = G+n1G(1)0 + ...+nsG(s)0 and we are done.
CASE 3. G is arbitrary. We add, if necessary, a positive cycle

Go to G, which is so large that G+G0~O; we then apply the result
of case 2 to G+G0.
When G is a cycle of C, we denote by [G] the set of elements e E E’

which have the property that G(e)+G~O, together with the 0-element
of E. Clearly, [G] is a subgroup of the additive group of E, which
is closed under multiplication by elements of F* and hence cer-
tainly under multiplication by elements of F. If G0~O, evidently
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THEOREM 4.1. Let G be a cycle of C. The additive group [G]
has a finite number of generators over F, i.e., [G] is a module.

PROOF. CASE 1. There exists a nonzero module M of E which
is such that G = -G(M). In that case, it follows immediately
from the definition of [G] and |M; B|, that [G] = |M; B|; we
conclude from statement 4.1 that [G] is then a module. Observe
that in this case [G] is not the zero module, which already shows
that not every divisor can be considered as a G(M).
CASE 2. G is arbitrary. Let the cycle G0~O and the module

M ~ 0 be as in statement 4.3, i.e. G+Go = -G(M). Then,
[G+G0] is a module and [G] ~ [G+G0], and hence [G] is a

module; done.
The next section contains a reformulation of theorem 4.1 in

terms of linear systems.
We finish this section with the following remarks regarding the

modules [hG], where h is a nonnegative rational integer and G is
a cycle of C. It is evident that the sum 03A3~h=1 [hG] of these modules
is a ring, and we deiiote this ring by R[G]. If G~0, [hG] ~ [kG]
when h~k, and hence then R[G] = Ô [hG]. Zariski has con-

jectured in his, as yet unpublished, manuscript entitled "Algebra-
geometric interpretations of the 14th problem of Hilbert" that,
when G~0, the ring R[G] is finitely generated over F. He has
shown in the same manuscript, which we designate by ZH, that
the proof of his conjecture would constitute a solution of Hilbert’s
14th problem. (In ZH, F(C) = E, but that is evidently im-
material. )

Of - course, if G = 0, R[G] = F* and we are done. Let

then G = ml VBl -f- ... + msVBs where VB1, ..., VB ~ B and
M19 ..., ms&#x3E;0. If e E R[G] where e ~ 0, G(e)+hG~O for some
h~1; this is clearly equivalent to saying that, if P(e) denotes
the pole-cycle of e, P(e)~hG, i.e. that the poles of e occur among
the divisors VBl’ ..., VB . We conclude from this immediately
that R[G] = D Bu , where Fg runs through all the elements of
lll which are distinct from VB1,..., VB.. Hence, R [G] is integrally
closed in E and Zariski’s conjecture can be formulated as follows.
Let VBl , ... , VBs be a finite set of elements of 2; then, the ring
n Bu where VBu runs through the elements of B which are distinct
from VBl’ ..., VBa , is finitely generated over F. This formulation
of the conjecture brings out the fact that the ring R [G] is not

so much associated with the cycle G, but rather only with the
divisors VBl’ ..., VB,. We come back to the ring R [G] in section 6.
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5. Linear systems. We continue all conventions of the previous
sections; the letter G always denotes a cycle of C.

It is clear that the mapping e-G(e) is a homomorphism from
the multiplicative group E’ of E into the additive group (
and that the multiplicative group of F* is the kernel of this

homomorphism. The subgroup of Qj which is the image of E’
under this homomorphism, induces in the usual way a congruence
relation = in OE; precisely, G1 ~ G2 means that G1- G2 = G(e),
for some e E E’. When G1 ~ G2, we say that the cycles G, and G2
of C are linearly equivalent.

Let M again be a nonzero module of E. Clearly, a cycle G of
C has the property that O ~ G(e)+G, for every e E M’, if and only
is 0  G(M)+G.
DEFINITION 5.1. Let M be a nonzero module of E and let G be

a cycle of C which has the property that O~G(M)+G. The set o f
cycles G(e)+G, where e E M’, is called a linear system of C and is
denoted by g(M; G).
We observe that linear systems consist of nonnegative, linearly

equivalent cycles. Precisely, if Go E g(M; G), Go has the following
two properties : (1) G0~O; (2) Go==G. Clearly, the set of a11 cycles
of C which possess these two properties consists exactly of the
cycles of the form G(e)+G, where e E [G] and e ~ 0. We know
from theorem 4.1 that [G] is a module and, since 7V c= [G], this
module is in the present case a nonzero module. Consequently,
the cycles o f C which have the above two properties, constitute the linear
system g([G]; G) and we designate this system by |G|. We call a
linear system complete if it is not contained in a larger linear
system and we see that 1 G is complete. Precisely, we have found
the following formulation of theorem 4.1. Every linear system
g ( M; G) is contained in a unique complete linear system |G|; here,
|G| consists of all the nonnegative cycles o f C which are linearly
equivalent to G.

When we choose a cycle G of C at random, it may be that

[G] - 0, i.e. that no nonnegative cycles exist which are linearly
equivalent to G. The question when [G] ~ 0 is much too closely
related to theorems of the type of Riemann-Roch theorems to
be treated by the elementary methods of this paper.
We now turn our attention to the notion of the dimension of a

linear system. It may very well be that g1(M1; G1) = g2(M2; G2),
where Ml =1=- M2 and G1 ~ G2. Hence, we can only use the dimen-
sion of M to define the dimension of g(M; G), if we know that the
set of cycles g(M; G ) determines at least the dimension of M.
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Now, this is simply not true, unless we postulate that F = F*;
for example, g( F; 0 ) - g(F*; O) = 0. Consequently, in the

remainder of this section we regret f ully assume that F is algebraically
closed in E, i.e. that F = F*.

STATEMENT 5.1. Let g1(M1; G1 ) and g2(M2; G2 ) be Two linear
systems of C, where g1(M1; G1) ~ g2(M2; G2). Then, G1 = G2 and
Ml c eM2, where e E E’ is such that G2 = G(e)+G1; consequently,
dim (M1) ~ dim (M2). Il gi(Mi; Gl ) = g2(M2; G2), dim (M1) =
diin (M2) and Ml = eM2.
PROOF. Let gl(MI; G1) ~ g2(M2; G2 ) . If el E M’, 1 G (el ) +

Gl E g2 (M2; G2 ) and hence G (el ) + G, = G (e2 ) + G2 for some

e2 E M2 . This shows already that G1 ~ G2, say G2 = G(e)+G1,
where e E E’. It is obvious that g2 ( M2; G2) = g2(eM2; -G(e)+G2)
==g2(eM2; G1 ). Now, let a E M’1; then G(a)+G1 E g2(eM2; G1 ) and
consequently G(a)+G1 = G(eb)+G1, where b~M’2. We now
conclude from G(a) = G(eb) that a = ebc, where cE F (here we
use that F = F*), and hence a E eM2. This shows that M1 ~ eM2
which implies that dim(M1) ~ dim(M2). It now follows that,
when g1(M1; G1) = g2(M2, G2), dim (M1) = dim(M2) and still

Ml c eM2; but this can only be when Ml = eM2, and we are done.
We define that the dimension of the linear system g(M; G) is

-1+dim(M).
REMARK 5.1. Again, the definition of the dimension of a linear

system has been chosen in such a way as to agree with the ter-

minology used in the theory of algebraic varieties. If F(C) = E,
our g(M; G) can be interpreted in the usual way as a linear

system L of (r -1 )-dimensional cycles, eut out on a suitably
chosen model S of E by a linear system of hypersurfaces of the
ambient projective space. The customary dimension of this linear
system L is -1+dim(M).

6. Well-behaved linear systems. We drop the assumption that
F = F*. The importance of the following definition is that,
whenever we are able to prove that a given linear system has the
properties we expect all linear systems to have, we can do this
because the given linear system can be reduced, in one way or
another, to well-behaved linear systems.

DEFINITION 6.1. A linear system g(M; G) of C is said to be well-
behaved if [hG] = |Mh|i for all h~0.
Of course, when h = 0, [OG] = IMOli = F* and hence g(M; G)

is well-behaved as soon as [hG] = /Mhli’ for h~1. Clearly, the
property of being well-behaved is a property only of the cycles
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of g(M; G) and does not depend on the choice of M and G.
The properties of well-behaved linear systems we expect, on

grounds of Zariski’s work and conjectures, to be properties of all
linear systems are stated in the following theorem, which is an
immediate corollary of theorem 4.1 and statement 5.1 of FI.
THEOREM 6.1. Let g(M; G) be a well-behaved linear system of C.

Then, the ring R[G] is finitely generated over F. Il furthermore
F = F*, we can associate with the cycle G a rational polynomial

f(x) = a0(x d) + a1(x d-1) + ...+ad and a rational integer ho, which
are such that dim(|hG|) = f(h), when h&#x3E;ho. The coe f f icients
ao, ..., ad are rational integers and ao is positive. Finally, the

degree d of f(x) is equal to the dim(C(M)).
We now go over to the discussion of an important example of

well-behaved linear systems; this is needed for FIII.

Let g(M; G) be a linear system of C. We see immediately that
the nonnegative cycle G(M)+G is the largest (in the sense of the
partial ordering of 0-5) cycle G* with the property that G’~G*
for all G’ E g(M; G). When G(M)+G &#x3E; 0, we call G(M)+G the
fixed cycle of g(M; G); when G(M) + G = 0, we say that

"g(M; -G(M)) has no fixed cycle." Clearly, the notion of the
fixed cycle of g(M; G) is independent of the choice of M and G,
and depends only on the cycles of the linear system.
STATEMENT 6.1. Let G be a cycle of C. There exi8t8 a nonzero

module M o f E which is such that G = -G(M), i f and only i f G
has the following two properties: (1) [G] =1=- 0; (2) 1 G has no fixed
cycle..
PROOF. Let G = -G(M). Then Me [G] and hence [G] =A 0.

Furthermore, the linear system g(Af; G) has then no fixed cycle
and, since g(M; G) ~ |G|, certainly |G| has no fixed cycle. Con-
versely, let G have the above two properties. Then, |G| = g([G] ; G)
and since 1 G has no fixed cycle, G = -G([G]) and we are done.
REMARK 6.1. Let, as in remark 5.1, F(C) = E and let g(M; G)

again be interpreted as a linear system L of (r-1 )-dimensional
cycles of a suitably chosen model S of E. Then, the fixed cycle
of L in the sense of algebraic geometry corresponds to the fixed
cycle G(M)+G of g(M; G). Of course, if L has no fixed cycle
and r~2, L may still very well have base points. If L has no
base points, the rational transformation T of S which is associated
with L has no fundamental points on S. This implies that the
divisors of the first kind of T(S), if the dimension of T(S) is the
same as of S, are also of the first kind for S. This is the geometric
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background of the two conditions which occur in theorem 6.2.
If M is a nonzero module of E which is such that dim ( C (M ) ) ~1,

we designate the set of divisors of the first kind of the projective
class C(M) by B(M).
THEOREM 6.2. Let g(M; G ) be a linear system of C which has

the following two properties: (1) g(M; G) has no f ixed cycle, i.e.

G = -G(M); (2) either dim(C(M)) = 0 or B(M) ~ B. Then,
g(M; G) is well-behaved.

PROOF. Since g(M; G) has no fixed cycle, G = -G(M). It

follows that hG = -G(Mh), which implies that [hG] = |Mh; B|.
If dim (C(M))~1, we conclude from B(M) ~ B and theorem 3.1,
that [hG] = IMhli; if dim( C(M)) = 0, M = eN for some e E E’
and N c F*, and it is obvious that then |Mh|i = ehF* and
[hG] = [-G(eh)] = ehF*; done.
In order to tie up the modules [hG] and the linear systems

lhGI with the multiples of the linear system g(M; G ), we say a
few words about the notion of the sum of linear systems; this is
also needed for FIII. When g1(M1; G1) and 92(M2; G2) are linear
systems, we define that the sum g1(M1; G1)+g2(M2; G2) is the

linear system g(MIM2; Gl+G2); this definition is permissible since
G(M1M2)+(G1+G2)=(G(M1)+G1)+(G(M2)+G2)~O. Clearly,
the sum is the smallest linear system which contains the cycles
G’1+G’2, where G’ 1 E g1(M1; G1 ) and G2 E g2(M2; G2); this shows in
particular that the sum is independent of the choice of Ml, G1,
M2, G2, but depends only on the cycles of gl (Ml; G1) and g2 (M2; G2) -
The summation of linear systems is a commutative and associative

operation which has the linear system g(F ; 0), which consists of 0
only’ as 0-element. Finally, it is clear that the fixed cycle of a
sum of linear systems is the sum of the fixed cycles of the in-
dividual systems.

It follows from the above that the multiples hg(M; G) of a
linear system are well defined for h~0 and that hg(M; G) =
g(Mh; hG). Each such multiple is contained in the unique com-
plete linear system lhgl.
REMARK 6.2. Linear systems without base points. We assume

that S is a normal model of E which is defined over F as ground-
field ; here, "normal" means "locally normal" in the sense of
Zariski. We denote by C the projective class of modules of E
which arises from the affine models of S (see remark 1.1) and
by ? the set of divisors of the first kind of C. We know that
there exists a (1-1) correspondence between the elements of ?
and the irreducible, (r -1 )-dimensional subvarieties of S. In
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particular, a linear system g(M; G ) of C can be interpreted as a
linear system L of cycles on S. The main purpose of this remark
is to prove that, if L has no base points on S, g(M; G ) is well-
behaved.
STATEMENT 6.2. Let L have no base points on S. Then,

[G] ~ F~M~.
PROOF. We have seen already several times that F~M~ is the

intersection of all the valuation rings of E/F which contain M.
Hence, let VB be a valuation of E/F where Mc B; all we have

to show is that then [C] ~ B. If e E M’, the cycle Y = G(e)+G
is nonnegative and g(M; G) = g((1/e)M; Y). Furthermore,
e[Y] = [G] and hence, if [Y] ~ B, also [C] ~ B. We may con-
sequently assume for our proof that G~O. If G = 0, clearly
[G] = F* ~ B and we are done. So, let G = m1VB1 +...+ m, VBa ,
where mj &#x3E; 0 and Fp e ? for j = 1, ..., s. We denote by Dj the
center of Fp on S and by Q the center of Fp on S. We show that
Q ~ Dj, for j = 1, ..., s, by means of the following argument
which occurs in section 4 of ZH. Since L has no base points,
there exists a cycle Y ~ L which is such that Q w Y. This means
exactly the following. There exists an e E M’ such that, if

G(e) + G = ni WB1 + ... + n, WB where WB e ? and nj&#x3E;0
for j=1, ..., t, then Y=n1Y1+ ... + nt Yt where Y, is

the center of WB on S for j - 1, ..., t; Q m Y means that

Ç 4= Yi for j = 1, ..., t. Since G(e) = n1 W B1 + ... + ntWBt -
(m1VB1+... +msVBs), the cycle of e on S is ni Y1 + ... -E- nt Yt -
(m1D1+... +msDs). Now suppose that Qc Du for some 1~u~s.
Then, none of the cycles Y,, ..., Y, could be equal to Du, and
hence Q would then be a subvariety of the polar cycle Du of e
and not of any null-cycle of e. This would imply that e ~ B,
against the assumption that Mc B ; hence indeed, Q m Dj for
i = 1, ..., s. Now let e E [G]’, i.e. let G(e)+G~O. If P(e) is the
pole-cycle of e, we conclude from P(e)~G, that the poles of e
must occur among the divisors VB1’ ..., VBs; hence the polar
cycles of e on S must occur among the cycles D1, ..., Dg. This
proves that Q is not contained in any polar cycle of e and hence
that e E B. The proof of statement 6.2 is now complete.
THEOREM 6.3. Let L have no base points on S. Then, g(M; G)

is well-behaved.
PROOF. If e ~ |M|’i, eN ~ NM for some nonzero module N, from

which we conclude that G(e)~G(M); hence, since G(M)+G~O,
certainly G(e)+G~O, which shows that e E [G] and hence that
|M|i ~ [G]. So far, we did not use that L has no base points.
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We now use the absence of base points to show that [G] ~ IMli.
Again 1 M 1 i = ~ aF~(1/a)M~, where a runs through M’; con-
sequently, all we have to show is that, when a e M’,
[G] ~ aF~(1/a)M~. Now g(M; G)=g((1/a)M; G(a)+G) and hence,
according to statement 6.2, [G(a)+Gj c F~(1/a)M~. We observe
that [G(a)+G] = (1/a)[G] and hence indeed [G] ~ aF~(1/a)M~,
which shows that [G] == IMli. When h~0, the linear system
hg(M; G) = g(MI; hG) corresponds to the linear system hL on S.
Evidently, hL has no base points and hence, according to the just
proven result, [hG] = |Mh|i for h~0, and theorem 6.3 is proved.
According to theorem 6.3, we may apply theorem 6.1 to a linear

system g(M; G) whose corresponding linear system L has no base
points on S. When we do this, we obtain a statement concerning
the dimension of L and a statement concerning the ring R[G].
The first statement occurs in Z and the second one in ZH.

Lét us now return to an arbitrary linear system g(M; G) of C
whose corresponding linear system L on S is not necessarily
free of base points. We can always consider the linear system L,
of S which corresponds to the linear system g(|M|i; G) of C;
namely, the cycles G(M) of M and G(|M|i) of |M|i are the same
and hence, since G(M)+G~0, also G(|M|i)+G~O. Evidently,
Le Li and we see from theorem 6.3 that, if L has no base points
on S, Li is the complete linear system |L| which contains L. If
L has base points, L, may or may not be equal to ILI. The author
conjectures that the relationship between L and Li is always the
following, The linear system Li is the largest linear system which
satisfies the following two conditions: (1) Le Li; (2) every base
variety of L, if L has any such varieties, is a base variety o f the
same type of Li. Accepting this, the following geometrical inter-
pretation is associated with the strictly algebraic notion of a well-
behaved linear system. A linear system L of S is well-behaved
if and only if, for all h, every base variety of hL is a base variety
of the same type of the complete linear system hL I. This makes
theorem 6.3 geometrically self-evident.
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