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A Theorem on the Zeros of an Entire Function

by

Pawan Kumar Kamthan, Birla College, Pilani

1. Our aim in this note is to prove the following theorem.
THEOREM : If P(z) is a canonical product of genus p and order

p(p &#x3E; p) defined by:

where zl, Z2’ ... etc. are the zeros of P(z) whose modulii rl , r2 , ...
etc. form a non-decreasing sequence such that rn &#x3E; 1 for all n and

where r. -&#x3E; oo as n -&#x3E; oo, then for z in a domain exterior to the

circles of radius rnh(h &#x3E; p) described about the zeros z. as centres,
we have

where K is a constant independent of p and P’(z) is the first
derivative of P(z) and n(x) denotes the number of zeros whithin
and on the circle [z] - x.

PROOF: It is sufficient to differentiate log P(z) in a region in
which it is regular. Such a region can always be found out: and
before we tackle this problem, we would, however, like to arrange
the zeros in the following way.

Let K( &#x3E; 1 ) and K’ (&#x3E; 1 ) be two numbers so suitably chosen that
the zeros of modulii rN+1, rN+21 .. etc. lie outside the circle with
centre origin and radius Kr and the zeros of modulii rI’ r2 , ..., rN
lie inside the annular region of outer radius Kr and inner radius
r( K’ )-1 respectively (these later zeros may also lie on the outer
circumference of the annulus).
Now we indent all the zeros by small circles of radii r,’(h &#x3E; p;

n = 1, 2, ... ). But Y’, r-h is convergent since h &#x3E; p and hence
after exclusion of these circles we are still left with a domain
which does not include these so drawn circles. This means that if
we take a point z in this excluded region, then Ir-rnl &#x3E; r-’.
Now we return to the mathematical formulation of the problem.
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We write

where

and

E(z/z,,, p ) being Weierstrass’s primary factor. Now from the ex-
prcssioll for P(z) we have

We can differentiate the above expression in the excluded region,
for the right-hand side is regular, and uniformly and absolutely
convergent. We have then

ESTIMATION OF Il: Let us write r/rn = Un. Then, since

11-z/znl I ? Il-r/rnl I we have

where N = n(Kr). Again in Il’ K’ &#x3E; Un &#x3E; I/K and so
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Hence

where K4 depends on x and K’.

ESTIMATION OF I2: we have

But in I2’ IZ/Z-1  1/k  1. Hence

Therefore,

But (1+un)2  (1+1/K)2. So we get:

Hence from (1), (2) and (3) we get:
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Now the expression written within the curly bracket inside the
integral sign is bounded in (0, oo) and monotonie increasing.
Hence, we have finally
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