# Compositio Mathematica 

## Pawan Kumar Kamthan

## A theorem on the zeros of an entire function

Compositio Mathematica, tome 15 (1962-1964), p. 109-112
[http://www.numdam.org/item?id=CM_1962-1964__15__109_0](http://www.numdam.org/item?id=CM_1962-1964__15__109_0)
© Foundation Compositio Mathematica, 1962-1964, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

Article numérisé dans le cadre du programme

## A Theorem on the Zeros of an Entire Function

by<br>Pawan Kumar Kamthan, Birla College, Pilani

1. Our aim in this note is to prove the following theorem.

Theorem: If $P(z)$ is a canonical product of genus $p$ and order $\rho(\rho>p)$ defined by:

$$
P(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) \exp \left\{z / z_{n}+\frac{1}{2}\left(z / z_{n}\right)^{2}+\ldots+\frac{1}{p}\left(z / z_{n}\right)^{p}\right\}
$$

where $z_{1}, z_{2}, \ldots$ etc. are the zeros of $P(z)$ whose modulii $r_{1}, r_{2}, \ldots$ etc. form a non-decreasing sequence such that $r_{n}>1$ for all $n$ and where $r_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then for $z$ in a domain exterior to the circles of radius $r_{n}^{-h}(h>\rho)$ described about the zeros $z_{n}$ as centres, we have

$$
\left|\frac{P^{\prime}(z)}{P(z)}\right|<K \int_{0}^{\infty} \frac{n(x) r^{\rho}}{x^{p}(x+r)^{2}} d x
$$

where $K$ is a constant independent of $p$ and $P^{\prime}(z)$ is the first derivative of $P(z)$ and $n(x)$ denotes the number of zeros whithin and on the circle $|z|=x$.

Proof: It is sufficient to differentiate $\log P(z)$ in a region in which it is regular. Such a region can always be found out: and before we tackle this problem, we would, however, like to arrange the zeros in the following way.

Let $\kappa(>1)$ and $\kappa^{\prime}(>1)$ be two numbers so suitably chosen that the zeros of modulii $r_{N+1}, r_{N+2}, \ldots$ etc. lie outside the circle with centre origin and radius $\kappa r$ and the zeros of modulii $r_{1}, r_{2}, \ldots, r_{N}$ lie inside the annular region of outer radius $\kappa r$ and inner radius $r\left(\kappa^{\prime}\right)^{-1}$ respectively (these later zeros may also lie on the outer circumference of the annulus).

Now we indent all the zeros by small circles of radii $r_{n}^{-h}(h>\rho$; $n=1,2, \ldots)$. But $\sum_{n=1}^{\infty} r_{n}^{-h}$ is convergent since $h>\rho$ and hence after exclusion of these circles we are still left with a domain which does not include these so drawn circles. This means that if we take a point $z$ in this excluded region, then $\left|r-r_{n}\right|>r_{n}^{-h}$.

Now we return to the mathematical formulation of the problem.

We write

$$
\begin{equation*}
P(z)=P_{N}(z) Q(z) \tag{A}
\end{equation*}
$$

where

$$
P_{N}(z)=\prod_{n=1}^{N} E\left(z / z_{n}, p\right)
$$

and

$$
Q(z)=\prod_{n=N+1}^{\infty} E\left(z / z_{n}, p\right)
$$

$E\left(z / z_{n}, p\right)$ being Weierstrass's primary factor. Now from the expression for $P(z)$ we have

$$
\log P(z)=\sum_{n=1}^{\infty}\left\{\log \left(1-\frac{z}{z_{n}}\right)+\left(z / z_{n}+\frac{1}{2}\left(z / z_{n}\right)^{2}+\ldots+\frac{1}{p}\left(z / z_{n}\right)^{p}\right)\right\}
$$

We can differentiate the above expression in the excluded region, for the right-hand side is regular, and uniformly and absolutely convergent. We have then

$$
\begin{align*}
\frac{P^{\prime}(z)}{P(z)} & =\sum_{n=1}^{\infty}\left\{\frac{-1}{z_{n}\left(1-z / z_{n}\right)}+\frac{1}{z_{n}}\left(1+\frac{z}{z_{n}}+\ldots+\left(\frac{z}{z_{n}}\right)^{p-1}\right)\right\} \\
& =\sum_{r / \kappa^{\prime}<r_{n} \leq \kappa r}+\sum_{r_{n} \geqq \kappa r}=\sum_{1}+\sum_{2} \tag{1}
\end{align*}
$$

Estimation of $\Sigma_{1}$ : Let us write $r / r_{n}=u_{n}$. Then, since $\left|1-z / z_{n}\right| \geqq\left|1-r / r_{n}\right|$ we have

$$
\left|\Sigma_{1}\right| \leqq \sum_{n=1}^{N}\left\{\frac{1}{r_{n}\left|1-u_{n}\right|}+\frac{1}{r_{n}}\left(1+u_{n}+\ldots+u_{n}^{p-1}\right)\right\}
$$

where $N=n(\kappa r)$. Again in $\sum_{1}, \kappa^{\prime}>u_{n} \geqq 1 / \kappa$ and so

$$
\begin{aligned}
\left|\sum_{1}\right| & \leqq \sum_{n=1}^{N} \frac{1}{r_{n}\left|1-u_{n}\right|}+\sum_{n=1}^{N} \frac{u_{n}^{p-1}}{r_{n}}\left(1+\frac{1}{u_{n}}+\ldots+\frac{1}{u_{n}^{p-1}}\right) \\
& \leqq \sum_{n=1}^{N} \frac{1}{r_{n}\left|1-u_{n}\right|}+\sum_{n=1}^{N} \frac{u_{n}^{p-1}}{r_{n}}\left(1+\kappa+\ldots+\kappa^{p-1}\right) \\
& \leqq \sum_{n=1}^{N} \frac{1}{r_{n}\left|1-u_{n}\right|}+K_{1} \sum_{n=1}^{N} \frac{u_{n}^{p-1}}{r_{n}}
\end{aligned}
$$

But $\left|1-u_{n}\right|>r_{n}^{-h-1}$.

Hence

$$
\begin{align*}
\left|\sum_{1}\right| & <\sum_{n=1}^{N} r_{n}^{n}+K_{1} \sum_{n=1}^{N} \frac{u_{n}^{p-1}}{r_{n}}<K_{2}+K_{1} \sum_{n=1}^{N} \frac{u_{n}^{p-1}}{r_{n}} \\
& <K_{3} \sum_{n=1}^{N} \frac{u_{n}^{p-1}}{r_{n}}<K_{4} \sum_{!n=1}^{N} \frac{u_{n}^{p}}{r_{n}\left(1+u_{n}\right)^{2}} \tag{2}
\end{align*}
$$

where $K_{4}$ depends on $\kappa$ and $\kappa^{\prime}$.
Estimation of $\sum_{2}$ : We have

$$
\sum_{2}=\sum_{n=N+1}^{\infty}\left\{\frac{-1}{z_{n}\left(1-z / z_{n}\right)}+\frac{1}{z_{n}}\left(1+\frac{z}{z_{n}}+\ldots+\frac{z^{p-1}}{z_{n}^{p-1}}\right)\right\}
$$

But in $\sum_{2},\left|z / z_{n}\right|<1 / \kappa<1$. Hence

$$
\Sigma_{2}=-\sum_{n=N+1}^{\infty}\left\{\left(z / z_{n}\right)^{p}+\left(z / z_{n}\right)^{p+1}+\ldots\right\} \frac{1}{z_{n}}
$$

Therefore,

$$
\begin{aligned}
\left|\sum_{2}\right| & \leqq \sum_{n=N+1}^{\infty} \frac{1}{r_{n}}\left(u_{n}^{p}+u_{n}^{p+1}+\ldots\right) \\
& <\sum_{n=N+1}^{\infty} \frac{u_{n}^{p}}{r_{n}}\left(1+\frac{1}{\kappa}+\frac{1}{\kappa^{2}}+\ldots\right) \\
& =\frac{\kappa}{\kappa-1} \sum_{n=N+1}^{\infty} \frac{u_{n}^{p}}{r_{n}}
\end{aligned}
$$

But $\left(1+u_{n}\right)^{2}<(1+1 / \kappa)^{2}$. So we get:

$$
\begin{align*}
\left|\sum_{2}\right| & <\frac{\kappa}{\kappa-1}(1+1 / \kappa)^{2} \sum_{n=N+1}^{\infty} \frac{u_{n}^{p}}{r_{n}\left(1+u_{n}\right)^{2}} \\
& =K_{5} \sum_{n=N+1}^{\infty} \frac{u_{n}^{p}}{r_{n}\left(1+u_{n}\right)^{2}} . \tag{3}
\end{align*}
$$

Hence from (1), (2) and (3) we get:

$$
\begin{aligned}
\left|\frac{P^{\prime}(z)}{P(z)}\right| & <K_{6} \sum_{n=1}^{\infty} \frac{u_{n}^{p}}{r_{n}\left(1+u_{n}\right)^{2}}, \quad K_{6}=K_{6}\left(\kappa, \kappa^{\prime}\right) \\
& =K_{6} \sum_{n=1}^{\infty} n\left\{\frac{u_{n}^{p}}{r_{n}\left(1+u_{n}\right)^{2}}-\frac{u_{n+1}^{p}}{r_{n+1}\left(1+u_{n+1}\right)^{2}}\right\} \\
& =K_{6} \sum_{n=1}^{\infty} n \int_{r_{n}}^{r_{n+1}} d\left(\frac{-(r / x)^{p}}{x(1+r / x)^{2}}\right)
\end{aligned}
$$

$$
=K_{6} \int_{0}^{\infty} \frac{n(x) r^{p}}{x^{p}(x+r)^{2}}\left\{\frac{x(p+1)+r(p-1)}{x+r}\right\} d i c .
$$

Now the expression written within the curly bracket inside the integral sign is bounded in ( $0, \infty$ ) and monotonic increasing. Hence, we have finally

$$
\left|\frac{P^{\prime}(z)}{P(z)}\right|<K \int_{0}^{\infty} \frac{n(x) r^{p}}{x^{p}(x+r)^{2}} d x .
$$

Finally, I wish to thank Dr. S. C. Mitra, Research Professor, for his useful and valuable guidance in the preparation of this note.

I am also thankful to Professor Dr. V. G. Iyer and Dr.S.K. Singh for the privilege of receiving their generous help and valuable comments.

Mathematics Department, Birla College, Pilani, India

