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Normed spaces of generalized functions
by

J. B. Miller

1. Introduction 

We describe here some pairs of dual spaces determined from
initially prescribed normed linear spaces by means of bounded
linear operators. If the prescribed spaces are function spaces, the
dual pair frequently play the roles of a space of generalized func-
tions and its space of test functions, and the construction serves
as a method of embedding a given function space in an extension
space of generalized functions which can be described as strong
limits. The construction of a pair of dual spaces is straightforward.
Let X and ?) be Banach spaces, and A a suitable operator on 3i
into ID. We can define a new norm on 3i by writing

and if 3i so normed is incomplete, embed 3i in its completion,
which we write as 3E+ and call an inflation of X by A. At the same
time, the range of A in ?) can be normed by

we call this a deflation of ID, and denote it by IDÃ-l. The spaces

(where * dénotes the adjointing operation) constitute the dual
pair determined by 3E, V and A. 

Consider two examples.
1°. Take 3C = ?) = L2(0, oo) and define A by

It turns out that 3EA+ is an extension of L2{0, oo ) whose elements
have some of the properties usually associated with generalized
functions. The space contains a delta function, and up to k
derivatives can be defined locally for its members, though not
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very conveniently. The dual space (X*)-i determined by the
adjoint operator

is made up of L 2 functions x for which t""0153(k)(t) e L2 and

X = A*[uk0153(k)(u)J. Elements of this space possess atleast k deriv-
atives, with certain Lipschitz properties. These spaces are discussed
in detail in [5], [6] and [7]. Some other extensions of L2(0, oo)
are described in [8].

2°. Take x = Ll (0, oo), let F be a compact subset of the positive
reals with non-empty interior, and consider the Laplace transfor-
mation

as a mapping of Ll(0, oo) into the space ?) = C(F) of continuous
functions on F with the uniform norm. Then

and by completion under this norm LI yields a space in which
every element has a well-defined strong left derivative. We return
to this example later, and obtain a generalization of it in § 7.

Other examples of the types of structures contemplated in this
paper will be found in [2], [8] and [4]. A. P. Guinand in [2]
describes some deflations of L2(0, oo), and also uses deflationary
processes to obtain a pair of subclasses of L2(0, 2n) and 12 with a
Fourier-series reciprocity property. R. R. Goldberg in [3] general-
izes some deflations described by Guinand and the author.
CONTENTS. In § 2 we specify a class of operators which give rise

to inflations and deflations, and in § 3 we examine further the
duality between the two spaces; § 4 is devoted to examples. § 5
discusses the partial ordering of inflations by inclusion. § 6

describes inflation of algebras.
We use Example 2° as a motivating and illustrative example in

the course of the discussion, and in § 7 obtain a natural generaliza-
tion by using the Gelfand representation of a commutative
Banach algebra.

2. Inflating operators in Banach spaces

Starting with spaces 3E and ID, we first consider the conditions
which A should satisfy in order that XÀ be a workable extension of
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X. For simplicity we suppose A linear; and although the norm of 3i
and its completeness are not necessary for the definition of the
inflation, none the less we suppose both 3E and ?) to be Banach
spaces. We can regard ae+ as usual as the set of equivalence classes
of sequences of elements of 3i which are Cauchy with respect to
the A-norm II-liA, and write (X,,)IAX, X.--&#x3E;AX, ae = limAaen
if the sequence (x.), x. e ae (n -&#x3E; oo) determines x in 3E+. We lay
down the following requirements.

(a) 1 IXI JA be defined for all x e 3E; i.e. D(A) = X.
(b) The norm of ae be stronger than ".11 A, so that the limiting

process in l£ be preserved in ae+A; i.e.

For this it is necessary and sufficient that A be bounded.

(c) The norm topology of 3E+ indu ce a Hausdorff topology on
ae; Ï.e.

which is the case if Ax = 0, x e ae imply x = 0. This condition also
ensures that l’. liA has the properties of a norm.

(d) A ae be dense in ID.. (If the closure A ae were a proper subspace
of ID, we could restate the theory using this subspace in place of D.)

(e) ae+A be a proper extension of ae; i.e. there exist at least one
sequence (sn)’ Sn e ae, which is Cauchy in ae+A but not in ae.
These suggest
DEFINITION 1. The linear operator A from ae into D is called a

"proper inflator" (proper inflating operator) il
DÀ(I) A is bounded, with domain ae;

(2) Ax = 0, x e ae imply x = 0;
(3 ) the range 01 A is dense, but properly contained, in 9).

Il instead A satis f ies (1), (2) and
(3)’ the range 01 A is ID, .

it is called an "improper inflator".
we denote the set of inflating operators by (ae, D), of proper

inflators by Ùp . A proper inflator satisfies (a) to (e). If A is an
improper inflator, then ae+A = ae: for A -1 exists by (2), and is bound-
ed, by a well-known theorem of Banach; 1 ) hence every A -

Cauchy sequence is Cauchy in ae.
As consequences of Q(l )-(3) we note that A is closed, and its

1) See [1 ], Theorem 2.12.1. Other theorems in Chapters 1 and 2 of [1] are used
below.
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range is of the first category in ID (by the closed graph theorem);
A-1 is defined and closed but unbounded; A* (the adjoint of A)
exists as a bounded linear operator mapping ID* into 3i* (the
conjugate Banach spaces), IIA*11 = IIAII, and (A* )-1 = (A-’)*,
the operators being unbounded. We summarize the construction
of YÀ in
THEOREM 1. If A is a proper inflator in U(ae, D), then ae+A is a

Banach space isometrically isomorphic to ID, and ae is a dense sub-
space in ae1. The operator A can be extended to an operator mapping
XÀ onto ID, with a unique inverse which is the extension of the A-’
determined by QA(2).
We shall not as a rule distinguish A, A* or A-1 from their

extensions explicitly. The following result is useful.

LEMMA 1. Il a subset lI of 1 is dense in ae, then it is dense in
ae+A; that is, A U is dense in D.
The proof is straightforward.
A consequence of the lemma is that U(ae, D) is a semigroup

under operator multiplication; for if A, B, e Ù, then A B clearly
satisfies S2AB (1) and (2), and (3) follows from the lemma. 3p is
likewise a semi-group, and we have

for if A B, for example, is improper, (A B -1 is bounded, and so then
is A -1 = B (A B)-’, implying A e We note that I c- %’ e 0 e
THEOREM 2. Il A is an improper inflator, then so is A*. I f

A ej)(ae, ID) and 3E is reflexive, then A * e 3E*).
PROOF. If A e(ae, ID), then QA-(l) and (2) hold. If A is im-

proper then (A*)-’ = (A-’)* has domain ae*, and so A * is an

improper inflator. Suppose A proper; we prove .QA(3). Now
A * ID* is properly contained in ae*, for if not then A -1 is bounded
and A is improper. Also A*?)* is dense in ae* if X is reflexive.
For then the closure A * fi* equals [N (A ) ]0, the annihilator of the
null space of A : here 91(A) is {0}, and hence [N(A )]° = 3E*. Thus
QA*(3) holds. 2 )
The condition that 3i be reflexive cannot be omitted. A counter-

example will be found in [12], Ex. (II2, 11,2)’
THEOREM 3. When A e 8(X, ?)), the de f lation IDA -1 is a Banach

space.
PROOF. The deflation space is clearly linear ; the proof of its

2 ) We have used [1], Theorem 2.11.15 and [14], p. 286, Theorem 2.
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completeness follows directly from its définition and the assump-
tion that 3E is complete.

If A * is an inflator, the set A *ID* can in the same way be made
into a Banach space (ae*&#x3E;:*-l, a déflation of X*, with the norm

We note that if A e U(ae, ID), (ae*)Ã.-l is a Banach space even when
A * j iJ(ID*, ae*), i.e. when QA*(8) does not hold.
Let [., .]..4 be the complex-valued bilinear function on

(3i* )x*-i X ££ defined by

With this form, the deflation and inflation become a pair of dual
spaces in the sense of Rickart [10], p. 62,3) in fact normed dual,
since

We shall denote this pair of spaces briefly by 3i*-, X+, omitting
the "A" when there is no ambiguity.

3. Conjugacy and A-weak convergence

We now look for conditions under which the duality between
the spaces ae*- and X+ becomes one of conjugacy, and to this end
prove Theorem 5 below. We also consider a form of weak conver-

gence in 3i+ under which ae+ may be complete. The two results
sliow the way in which ae*- may play the role of a space of test
functions for a space ae+ of generalized functions. We assume in
this section that A e(ae, D), but make no stipulation about A*.
DEFINITION 2. The sequence (xn), aen e 3E, is called A-weakly

Cauchy il [X*, X.-X,,,]A -&#x3E; 0 as min (n, m) -&#x3E; oo, f or every
X* e (x* )A *-1.
THEOREM 4. Let A c- jà(3E, ?» and let fi be re f lexive. Then the

A-weak completion of ae is ae1, and ae+ is A-weakly complete.
PROOF. If x E , then (2.1) shows that

defines a bounded linear functional ~ in (X*")*, thé conjugate

8) Cf. Lemma 2, below.
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space of (ae*)Ã*-l. If (aen) is A -weakly Cauchy, it then follows from
the theorem of uniform boundedness that

also defines an element of (ae*-)*. Therefore every x* e ae*-, a
bounded linear functional in ae*, can be extended to a bounded
linear functional in ae+* by defining x*(x) when x e ae+ to be
limnooae*(aen), where (aen) "-’Aae: the limit exists since any A -

Cauchy séquence is A -weakly Cauchy, and it is independent of the
sequence chosen for x. Moreover

and IIXIIA is the norm of this functional in 3i+*. Inequality (3.2 )
is valid for all x e 3i+, x* E 3E*-, and the definition of an A -weakly
Cauchy sequence can be extended to include sequences with
elements from 3E+. We call the collection of A-weak limits of

(equivalent) A -weakly Cauchy sequences from 3i the A -weak
completion of X.

Clearly 11 is contained in the A -weak completion of X. Conver-
sely, suppose that (xn ), xn e X, is A-weakly Cauchy. Then

for all x* = A* y* e ae*-, i.e. the sequence (Axn,) is weakly Cauchy
in ID, and since ?) is reflexive 4) converges weakly to some element
y e ID. By Theorem 1, y = Ax for some x e ae+; since x*(x) = y*(Ax),
we have

showing that (aen) converges A-weakly to an element of ae+.
The same argument shows that ae+ is A-weakly complete.
LEMMA 2. Let A e %’S(ae, ID) and ae e ae. Then

il and only il x = o.
PROOF. If x e X, the result is trivial. The sufficiency of x = 0

is also obvious. Suppose (xn ), xn e X, is a sequence for x e ae+ and
that (3.3) holds, i.e. lim_z*(z) = 0, all x* E A*ID*. Write
ae. = A* y*; it follows that (Axn) is weakly Cauchy in ID. It is
also strongly Cauchy by definition; since the strong and weak
limits coincide, we have IIA0153nll -&#x3E; 0, that is, x = 0.

C) [14] p. 156, Theorem 2.
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THEOREM 5. 1 f A e (ae, ID) and ?) is reflexive, then ae and
((3i* )x*-i]* are isometrically isomorphic.
PROOF. Let xeae; we saw that ~ in (3.1) is then an element in

(3i*-)*. Conversely, any element in (3i*-)* can be so written;
let ~ be an arbitrary bounded linear functional on 3E*-, so that
IcI&#x3E;(x*) 1  Î§" IIX*IIA--l’ , i.e.

Then cp(A *.) defines a bounded linéar functional y** on ?)*, and
since ID is reflexive, an element y e ID such that cp(4 * y*) =
y**(y* ) = y*(y), all y* e ?)*. Since y = Ax for some x e ae+,
§(A*y* ) = y*(4x) = (A*y*)(x); thus cp has the form (3.1) for
some x e ae+. Moreover

The mapping x --&#x3E; cp of X+ onto (X*")* determined by (3.1) is

easily seen to be a homomorphism, in fact an isomorphism by
Lemma 2, and it has been shown to be an isometry. This proves
the theorem.

When A is improper, so is A*, and the theorem takes the form
3i çr X**. Thus it may be thought of as providing a generalization
of reflexivity. If ?)’,is not reflexive, we can still conclude that

3e+ c (I*-)*.
COROLLARY. If A e 9(X, and X is reflexive, then (ID*). and

(eAzi)* are isometrically isomorphic.
The proof comes by applying the theorem to A* e i1(ID*, ae*).

4. Examples

1° (continued). It can be verified that the operators A and A*
of § 1, 1 ° are inflators, in the sense of Definition 1. Theorems 4 and 5
apply.

2° (continued). Let us verify that A e Ù(Ll(o, oo), C(F)} for
the operator in (1.3). Clearly Q(l) holds. Moreever, if x e Ll(0, oo ),
its Laplace transform x 1 (z) is a holomorphic function in R(z) &#x3E; O;b)
therefore if xv(z) vanishes on F, it vahishes for all 9t (z) &#x3E; 0,
and so x = 0; thus 12(2) holds. To prove S2(3) we use the Stone-

5) [13], p. 57.
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Weierstrass Theorem. Let a product in Ll(0, co) be defined by

the products induced by regarding Ll(0, oo ) as the closed subalgebra
{x: x(u) = 0 if u  0} of the group algebra Ll(-oo, co) with
convolution product, and consider the images of Ll(0, oo ) under A.
Since x v (z)y v (z) = (x y)V(z), these form an algebra. The algebra
separates points; for if x v (.1) = . v (z.) for all x e L’, then

e-Z1U-e-Sau as an element of L°° defines a zero functional in (L’)*,
and so zl = x2. It follows from the complex case of the above-
mentioned theorem that ALl is dense in C(F); 8) since it is certain-
ly not all of C(F), Q(3 ) is true. Clearly 3iQ is an algebra with iden-
tity.
The adjoint deflation in this case is the space of all measurable

functions f on (0, oo) of the form

where /À is a regular countably-additive set function on the Borel
sets of F, and IlfIL.*-l = JFld,u(s)l.

3°. Take 3i = LI( - 00, oo ), and ?) = Co(2013oo, oo ), the space of
continuous functions on the real line which vanish at :f: 00,
with uniform norm, and take for A the Fourier transformation

Q(l) and (2) hold, and (3) also, for it is known 7) that the Fourier
transforms of functions of LI( - oo, oo) are dense and of the first
category in Co( - oo, oo ). Thus A determines a proper inflation of
Ll. If Ll is made into a commutative algebra by means of the
convolution product, so that A (x . y) = AxAy, then T+ is also
an algebra; but it does not contain an identity (delta function),
nor is it possible to define derivatives conveniently in it, even of
all L’ functions; thus it lacks the more useful properties of the
usual generalized-function spaces.

4°. Consider the A of 3° instead as a mapping into = C(F).
In this case D(I) and (3) hold, but not (2). Let

1) [10], (3.2.13). ALI is self-adjoint on F since F is contained in the positive real
axis.

7) See Segal, [11].
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IF is a closed ideal in Ll. Let À be the operator induced by
A which maps LIlI F into C(F), i.e.

Then À is a proper inflator on 3C = LI/IF" and the algebra Il
is well defined. It has an identity, the element â for which

ô A (t) = 1. (t e F). Let Th be the translation operator

so that

zh is constant on cosets of IF, and so Th( = (Th) -) is defined, map-
ping X into I; and since ))ïj = IlilIÃ, TA is extendible to Il.
Consider the operator on L1 given by (1.h = h-l(Th_l), for which,
(exAae)"(t) = h-l(e-iht-l)ae"(t). Now if Itl  C and h is small

and so by appropriate choice of C we find that, for x e LI,

It follows that (ae(t+h)-ae(t»)/h as h -&#x3E; 0 is Cauchy in A-norm.
In fact, it is easy to see that (0153hx) is Cauchy in Â-norm for any
x e ae, and hence that derivatives are definable by strong
limits in X*t, for all elements of the space.
A similar argument (without recourse to a factor algebra)

justifies the assertion at the end of § 1, 2°.
To identify the adjoint deflation, notice that 3E* (LIlI F)*

can be identified with those elements of (Ll)* which are constant
on Ip, with the same norms, while (C(F))* is the space rca(F) of
all regular countably-additive set functions on the Borel sets
of F. It can then be shown that J* maps y e rca(F) into f(t) =

!Feit’dfl(s); thus (ae*).-l consists of such/, with 1I/IIA*-l = J pld,u(s)l.

5. Partial ordering of inflations

We examine conditions for different inflating operators to
determine the same inflation or same déflation, and more general-
ly, for inflations and deflations to be ordered by inclusion. In-
clusion and equality for two deflations of the same space may
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obviously be taken to mean set inclusion and equality; and then
we have

THEOREM 6. I f A e 3(X, )) and B e 9(S8, ?)), a necessary and
sufficient condition for IDÃ-l  ID:B-l is that B-1 A have domain ae. In
this case B-1 A is bounded.
The proof is straightforward. B-1 A is a closed operator, and

therefore bounded when its domain is ae.
In defining inclusion for two inflations of the same space X,

we wish to preserve the individuality of the elements of the
included space, and this is achieved if we regard an inflation
of X as a set of equivalence classes of sequences from X, and so as a
subclass of the class @(ï) of all sets of sequences from X, and
understand inclusion and equality to mean set inclusion and
equality in 6. Accordingly we make

DEFINITION 3. Il A e (ae, ID) and B e (ae, g) then I ae
shall mean that

(a) every A-Cauchy sequence from ae is also B-Cauchy,
(b) any two A -Cauchy sequences which are B-equivalent are also

A -equivalent.
We note that (a ) implies that two sequences which are Cauchy

and equivalent in A-norm are so in B-norm also, and that a se-
quence which converges to 0153 e ae in A-norm does so in B-norm
also. Thus (a ) ensures that an equivalence class in ae is preserved
intact in ae; (b) ensures that Il.IIB imposes a Hausdorff topology
on ae1 , as required. It is clear that C partially orders the deflations
and inflations of a given space.
A necessary and sufficient condition for (a) to hold is that

BA -1 be bounded in ID. For BA -1 maps Aae onto BX; if it is bound-
ed, then ) )BA-ly)[  cllYl1 for all y e AI, and so IIB0153ll  cllA0153l1
for all x e X, and (a) follows. Suppose conversely that (a) holds,
and let yn -+ y for Yn’ y e Aae. Writing Yn = Axn , y = Ax, we
have 0153n -+ .A0153, and therefore 0153n -+B 0153; i.e., BA -IYn -+ BA -ly.
Thus BA -1 is continuous on its demain, and so bounded. In this
case the least bounded closure BA -1 exists.

THEOREM 7. Il A e(ae, ID) and B e (ae, ,8), a necessary and
su f f icient condition f or XCX is that BA-l e ae(ID, ,8). For

ae1 . ae, it is necessary and sulficient that BA -1 be improper, i.e.,
that BA -1 and A B-1 are bou’l1.d,ed.

PROOF. Suppose that C = BA-1 is an inflator ; then C is bound-
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ed, and (a ) holds. To prove (b ), let (x’), (xi ) be two A -Cauchy
sequences from 3i which are B-equivalent, and write xn Xl _X2
yn = Aaen. Then Bx.,, 0; also yn --&#x3E; y for some y e ID, and so

Cy,, -&#x3E; Cy. Since IICYnl1 = IIBaenl1 -- 0, we have BA -1 y = Cy = 0,
and therefore y = 0 by !Jc(2). Thus Ax,. 0, and (xl), (xi)
are A -equivalent. Hence (b ) holds, and X CX.
To prove necessity, suppose (a) and (b) hold. By (a), BA-1 is

bounded with domain ?), and Qc(l) is satisfied. Clearly Qc(3) or
(3 )’ holds, and it remains to prove Qc(2). Let y e ?) be such that

BA -1 y = 0, y ~ 0. By S2A (3 ) we can find a sequence of elements
yn = A xn , xn e ae, such that yn -- y ; the (aen) so determined is then
an A -Cauchy sequence defining some ae e ae, and ae =F 0 since

y e 0. On the other hand,

that is, IIBxnll - 0, so that (xn ) and (0) are A -Cauchy sequences
which are B-equivalent but not A -equivalent, which contradicts
(b). The first part of the theorem is proved. The second follows
without difficulty.
COROLLARY 1. Il A and B belong to (x, ID) and ae is reflexive,
ae ae implies (x* &#x3E;:;*-1 (X*)j-i.
PROOF. The first inclusion implies that BA-l e (ID, ID), and

hence that A *-1 B* = (BA -1)* = (BA -1)* has domain ID*; the
result follows from Theorems 2 and 6.

COROLLARY 2. Il A and B belong to (x, I), then ae aeB’
. with equality i f and only il A is improper.

PROOF. We know that A B e 8(X, X). Since A = AB . B-1 is an
inflator, x C ££ . If the spaces are equal, A-l = B(AB)-1 is

bounded and A is improper; conversely if A is improper, B (A B )-1
and AB . B-1 are both bounded and so X =. X1B.
COROLLARY 3. Unless j)(x, ae) is empty, ae has no greatest

inflation.
PROOF. If A e Ù(3i, ae), Âri C aeft+l for n = 1, 2, ....
The next result concerns repeated inflation.
THEOREM 8. I f A and B belong to Ù(£, £ ) and 3i£ C £x , then B

has a closure 11 in (ae1, ae), and
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PROOF. Since Bx  = IIABA-l. Axll, B exists if and only if
A BA-1 is bounded; but this is a consequence of BA -1 e (ae, ae).
Now suppose C is a bounded linear operator mapping ae into
itself; it is easy to verify that C e (ae, ae) if and only if

ACA-1 e 9(X, I). For example, Qc(2; X) takes the form

which by the substitution xn = A x. becomes

and this is equivalent to: x E X, A CA w x = 0 imply i = 0. Thus
it follows from ABA-l=ABA-l=A.BA-le(ae,ae) that
B e Ù(3i£ , ae). And 3E’ = (ae). For the elements of these spaces
are the classes of .B-equivalent sequences of elements from

3i, 3i£ respectively, and any class of (3E+)-t can by the diagonal
process be seen to contain a sequence from X. But two such se-

quences determine the same or distinct elements in (3i£)) accord-
ing as they determine the same or distinct elements in 3E+
Thus the spaces are isomorphic, and since one contains the other,
they are equal.
The theorem and corollary point the distinction between XA+2

and (1+)+ = 3e+ .A A A .

If the operator of (1.1) is denoted by Ak , it can be verified by
using Mellin transform theory that

in the sense of Definition 3.
Consider the dependence in Example 2° of X+ upon the set F:

write AF for the operator in (1.3), and let F, G be two compact
sets of the type described in § 1, 2°, with F C G. Clearly IlxllÂI’ 
1 Ixl ÂG for x e 3i ; but this is not sufficient to imply that 3E’, C 3e+
In fact, AFAG’ satisfies Q(l) and (3)’, but not (2). The set

is a closed ideal in £+ and

(On the other hand, the adjoint deflation for F is contained in
that for G). At the same time there exist sequences which are
Cauchy in A F-norm but not in AG-norm. Shrinking the set F
has the effect of making the inflation less discriminating.
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6. Inflation of Banach algebras

We suppose now that 3E and ?) are both commutative Banach
algebras over the complex field, and that A is also an isomorphism
of 3E onto a dense subset in ID, i.e. that it satisfies S2A(1) to (3)
as a mapping of linear spaces, and also

Then the norms 11 - 1 J.A and 11 - 1 IA -1 are algebra norms, and X+A IDÃ-l
are likewise Banach algebras.
Let 0(3E), 0(?» denote the carrier spaces 8) of ae, ID,.i.e. the

subsets of ae*, ?)* respectively whose elements are the homo-
morphisms from the spaces onto. the complex-number field;
for cp e 4&#x3E;(ae) and x e X let x(cP) denote the image of x under c/J.
The isomorphism A induces a mapping Â of 0(?» into O(Y), by
the relation

Â is a continuous mapping under the X- and ?)-topologies (the
weakest topologies on P(X) and 0(?» for which the functions
x, y are continuous). Because of QA(3), Â maps the zero homo-
morphism onto the zero homomorphism, and is one-to-one:

for if Âcp = Ây for §, y e O(D), then by (6.1), y(cp) = y(tp) for all y
in a dense set of 3), in fact all y e ID since  is a continuous function
of y; hence cp = tp. It is clear that if cp e (X) corresponds to
E* e X* under the embedding (P X*, then x( cp) = E* (ae) for all
x e ae; (6.1) shows that the adjoint operator A* coincides with Â
as a mapping on 0(?».
THEOREM 9. The carrier space of ae is A (P(ID), and consista ol

those cp in 0 (3E) for which

(and so f or ail x e ae).
Similarly Â(P(IDÃ-l) = (p(ae), and (P(î}) consists of those y in

(P(IDÃ-l) for which

PROOF. If cp = A1p e A{/)(ID) then (6.2) certainly holds, for

On the other hand, if (6.2) holds then clearly § has a well-defined

8) (/j(ae) is 0£, in the notation of [10], Chapter 3.
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extension to 3i£ , and (A-I .)"(cI» determines a homomorphism on
jJ onto the complex numbers, say. Then Ây c- ÂO(?».
The proof of the second part is similar.

Example 2° (continued). Let us determine the carrier spaces
for X = Ll(o, oo) and its inflation, bearing in mind that 3e is

not the usual group algebra for the group of positive reals, but is
to be regarded as a closed subalgebra of Ll(-oo, oo), with the
form of product (4.1).9)
The homomorphisms ci&#x3E; of P(X) are in one-to-one correspondence

with the maximal modular ideals of ae. Let ffi and R stand for the

algebras obtained from Ll ( - oo, oo ) and LI(0, oo) by adjunction of
the (common) identity. Every maximal ideal m( =1= Ll(0, oo)) in 91
intersects R in a maximal ideal of R ; moreover, if Ml is a maximal
ideal in R contained in some maximal ideal 91 in 91, then Ml
= 9Ri n R. On the other hand, the maximal modular ideals in
Ll(0, oo) are precisely the intersections with Ll(0, oo) of the maxi-
mal ideals in R other than Ll (0, oo ) itself. Thus to every 9X will corre-
spond a maximal modular ideal in Ll(0, oo ), namely m n L’ (0, oo).
But the 9X are in one-to-one correspondence with the elements
x of the character group of ( - oo, oo ), and from this it can be
deduced that the maximal modular ideals M induced in Ll(0, oo )
as a subalgebra of Ll ( - oo, oo ) are those given by relations of the
form

Here ix, M and Z are corresponding elements, and X ranges over
( - 0, oo ).
The epiX so determined do not exhaust (ae). We can obtain the

whole space as follows. Every cp in the space, being a bounded
linear functional on L1 (0, oo ), determines by

an essentially bounded measurable function go = g. Then, for
any x, y in L1 (0, oo),

9 ) For the following remarks cf. [9], § 7,2, VI, and § 31, 1.
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while

These imply

and this identity, with the measurability of g, implies that lo)

for some complex number z = co-f-ix depending upon cp, with
co &#x3E; 0. We have x(c/&#x3E;.) = aeV (z) in the notation of (1.3), and the
elements of 0(£) can be identified with the points of the half-
plane 9î(z)&#x3E; 0, the region of convergence of the Laplace trans-
form.

If ae1 is the inflation of Ll(0, oo) by A = Ap, of (1.3), Theorem
9 shows that 0(3E+) can be identified with the compact set F.
0 (C (F» is also F.

7. Inflations using C(F)

We end with a discussion of the case ID = C(F), and obtain a
generalization suggested by Example 2°. We consider the following
situation.

Let I stand for any one of the real number sets Il = (0, oo),
Il = ( - oo, 0 ), or Iz = ( - oo, oo). Let 21 = 2«1) be a complex
commutative Banach algebra without identity, whose elements are
functions on I to some général linear space 9, so that x(t) e Q
whenever ae(.) e 2[, t e I. Let Il.11 be the norm of 9Î, and suppose
that the linear operations of addition and scalar multiplication in
21 are those induced from 9.
Let 0 = O(W) be the carrier space of 21. We know that x -&#x3E; x

is a homomorphic mapping of 21 into Co(OE), the space of all
continuous functions on the locally compact space 0 which vanish
at oo, with the uniform norm.

Let F be a compact subset of 0, which does not contain the zero

homomorphism. Let A p be the induced mapping x -&#x3E; i of S?.C
into C(F), the space of all continuous functions on F, and write

In what circumstances does AF e S(9t, C (F)) ? Since l0153lF  1 lx 11, 
.Q(l) certainly holds. Q(2), will not hold in general; it is valid in

1°) [1], Corollary to Theorem 4.1?’.3.
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the case of Example 2°, but not for Example 4°. Conditions for
Q(3) are given by the Stone-Weierstrass theorem: Ap9 certainly
separates the points of F, and does so strongly since F does not
contain the zero homomorphism; if also Ap9 is self-adjoint on F,
(contains the complex conjugate t(e) whenever it contains

/(e), for 0 e F) it follows that Ap 91 is dense in C(F). Assume that
S2(2) does hold: if dF is such that = 1 for cp e F then
x - dp = x for all x e W, contradicting the assumption that 3t
has no identity; therefore Ap2{ is a proper subset of C ( F ). Thus
S2(2) and self-adjointness together imply S2(3). Q(4) obviously
holds.
To reproduce the characteristics of Example 2° we need some

assumptions concerning the translation operation

We shall assume:

(i) that W is closed under translations rh for every h e J,
J being one of the sets Il, lI, or I Z , not necessarily distinct from I.

(ii) that -rhis a strongly continuous operator function of h at 0,
in the sense

and

(iii) that the product in 91 is so defined that

Notice that, if 9 is an algebra, (iii) holds only if the product in 21
is not that induced from 9 (except in the trivial case when all
elements of 2( are constant on I); the given property is characteris-
tic of convolution-type products.

(Example 2° can be considered as a case where 7 = Il, J = Il.
We have to remember in defining e that x(t) = 0 for t  0).
We now prove

THEOREM 10. Let 9t(/),j and F be defined as above, and
suppose that A.F is sell-adjoint on F and that .QAp(2) is valid.
Then A F e (9t, C ( F ) ), and St contains f or each 01 its elements x
a derivative

PROOF. The assumptions make A p a proper inflator. Now if
~ e 0(21), and x, y e 9t,



143

It follows that

where f is some numerical function depending upon ~. From
zk+k = dik and the definition of z-° we deduce

Also, if h e J, for each e e F we can find an x such that x( c/J) =1= 0,
and then

by assumption (i); hence t(h) is continuous on both sides at every
k e J. It is therefore a measurable function, and we conclude as
before that

for some complex number s which will in general dépend upon cp.
Let S be the image of F under the mapping - s(cp) = s.

It is clear that the mapping is continuous, for since A F21 is dense
in C(F) an x can be found for which x(~) =F 0 for cp e F. S is
therefore a compact set in the complex plane. The proof proceeds
now as in § 4, 4°. For h e J, Ihl  ho, we have

so that zh is extendible to a bounded linear operator mapping
91A+p into itself. It should be emphasized that our assumptions -
do not make the elements of the inflation functions on I to 9,
so that for x e 91A+,,, x(- + h ) must be taken to be defined as Tx
rather than the converse.

Writing 0153h = h-l(Th_l), we get
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valid for every x e 91A+p; and all Cauchy subsequences of «(1.h0153),
h -&#x3E; 0, define the derivative xd as an element of %A+p.
This concludes the proof.
We note that if x has a derivative already defined as a strong

limit in W, then this coincides with xd. The operation d is linear, and
has the product law

Clearly (0153d)" (cf» = x( cf» . s( cf».
We notice also that 21,+, is an algebra with identity, ô = dv

say, whose defining property is à(§) = 1. Now 21 is without

identity; let 91, be the algebra obtained by adjoining an identity, e
say. Since ô and e have the same algebraic properties, we may
embed Ni in 9Ï by making x+Âe correspond to ae+Âd for every
x c- 91 and scalar Â. Then 3t C 91, C lllQ . The norm of &#x26;1’ given by
llx+Âôll = Ilaell+IAI, dominates 1-1p.

Since s as a function of ~ belongs to C(F), there is some element
in 2I1.F to which it corresponds: it is ô,, for (dd)"(cf&#x3E; ) = à(§)s(§) =
s( cf». We see that differentiation can be written as multiplication
by 8a: xd = (x. ô)" = x. ô,.

Integration in S?.iÂF can be defined as follows. Suppose F so
chosen that s(~)) does not vanish in F: then [s(~)]-1 belongs to
C(F) and so determines an element, q say. We define integration
to be the operation of multiplying by q, and write x’ = q x. Then

q may be identified with (dd)-I. These formal calculations suggest
that a Mikusinski-like calculus exists in AF; but the space must
always possess divisors of zero, and the generalized functions
envisaged here are essentially different from Mikusinski’s.
The adjoint operator A* maps the space rca (F) into 91*,

and thus the adjoint deflation 21*- consists of those bounded
linear functionals x* on 3t which can be written in the form

for some p, e rca(F). Here A t p = x*, and lIae*IIÂj;l = Jpldfl(CP)I.
The A F-weak completion of 3t consists of the limits of

séquences (xn), aen e 9t, for which fp(xn(cp)-xm(cp»)dp,(cp)-+O, for
all p e rca(F). Since C(F) is not weakly complete in general,
9t is properly contained in the A p-weak completion of 9t.
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We observe that Example 2° is a case covered by the theorem,
since F there is supposed real (contained in the real axis) and has
non-empty interior; for the first of these conditions is necessary
and sufficient for A p 91 to be self-adjoint on F, and the second
implies .QÂp(2). For complex F, the example falls outside the
scope of the theorem.
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