Compositio Mathematica

Shankar Hari Dwivedi

Proximate orders and distribution of a-points of meromorphic functions

Compositio Mathematica, tome 15 (1962-1964), p. 192-202
http://www.numdam.org/item?id=CM_1962-1964__15__192_0
© Foundation Compositio Mathematica, 1962-1964, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Proximate Orders and Distribution of a-points of Meromorphic Functions

by
Shankar Hari Dwivedi

§ 1. Let $f(z)$ be a meromorphic function of order $\rho(0<\rho<\infty)$ and lower order $\lambda(0 \leqq \lambda<\infty)$. Let $M(r, f), T(r, f), n(r, a)$, $N(r, a)$ have their usual meanings.

We define $\rho(r)$ to be proximate order D of $f(z)$ for $T(r, f)$, having the following properties;
$1.1 \rho(r)$ is real, continuous and piecewise differentiable;
$1.2 \rho(r) \rightarrow \rho$ as $r \rightarrow \infty$,
$1.3 \quad r \rho^{\prime}(r) \log r \rightarrow 0$ as $r \rightarrow \infty$,
$1.4 \quad T(r, f) \leqq r^{\rho(r)}$ for $r \geqq r_{0}$
$=r^{\rho(r)}$ for a sequence of values of $r \rightarrow \infty$.
For the existence of this proximate order see [7] where $\rho(r)$ is constructed with $\log M(r, f)$ and $f(z)$ is an entire function. The same reasoning may be applied to construct $\rho(r)$ with the above properties. From the properties 1.1 to 1.4 we can deduce the following,
$1.5 \quad r^{\rho(r)}$ is an increasing function of $r \geqq r_{0}$.
$1.6 \quad(u r)^{\rho(u r)} \sim u^{\rho} r^{\rho(r)}$ for $r \geqq r_{0}$.
$1.7 \quad n(r, a)<K r^{\rho(r)}$ for all $r \geqq r_{0}$.
§ 2. We define $\lambda(r)$ to be proximate order L for $f(z)$ for $T(r, f)$ having the following properties.
$2.1 \lambda(r)$ is non-negative, continuous function of r for $r \geqq r_{0}$.
$2.2 \lambda(r)$ is differentiable except at isolated points at which $\lambda^{\prime}(r-0)$ and $\lambda^{\prime}(r+0)$ exist.
$2.3 \quad \lambda(r) \rightarrow \lambda$ as $r \rightarrow \infty$.
$2.4 \quad r \lambda^{\prime}(r) \log r \rightarrow 0$ as $r \rightarrow \infty$.
2.5 $\quad T(r, f) \geqq r^{\lambda(r)}$ for $r \geqq r_{0}$.
$=r^{\lambda(r)}$ for a sequence of values of $r \rightarrow \infty$.

[^0]For the existence of this proximate order see [8] where $\lambda(r)$ is constructed with $\log M(r, f)$ and $f(z)$ is an entire function. The same argument may be applied to construct $\lambda(r)$ with the above properties.

From properties 2.1-2.5 we can easily deduce the following $2.6 \quad r^{\lambda(r)}$ is an increasing function of $r \geqq r_{0}$.
2.7

$$
\begin{equation*}
(u r)^{\lambda(u r)} \sim u^{\lambda} r^{\lambda(r)} \text { for } r \geqq r_{0} . \tag{4}
\end{equation*}
$$

§ 3. Applying the properties of $\rho(r)$ and $\lambda(r)$ we prove a number of results. For convenience we set
3.1

$$
n(r)=n(r, a)+n(r, b)
$$

3.2

$$
N(r)=N(r, a)+N(r, b)
$$

where $a \neq b, 0 \leqq a \leqq \infty, 0 \leqq b \leqq \infty$ and prove the following theorems

Theorem 1. If
3.3

$$
\operatorname{Limsup}_{r \rightarrow \infty} \frac{T(r, f)}{r^{\lambda(r)}}=\alpha<\infty
$$

and
3.4

$$
\frac{N(r)}{r^{\lambda(r)}} \rightarrow 0 \text { as } r \rightarrow \infty .
$$

Then for $\boldsymbol{x} \neq \boldsymbol{a}, \boldsymbol{b}$

$$
\mathbf{1}=\liminf _{r \rightarrow \infty} \frac{N(r, x)}{r^{\lambda(r)}} \leqq \limsup \frac{N(r, x)}{r^{\lambda(r)}} \leqq \alpha<\infty .
$$

By putting $b=\infty$, we can easily deduce from this theorem the analogous result for entire functions. Also consider the following function

$$
f(z)=\prod_{1}^{\infty}\left(1+\frac{2}{A_{n}}\right)^{k u_{n}}
$$

where

$$
\begin{aligned}
k & =[\rho]+1 \\
U_{n} & =A_{n}^{\rho+n} \\
A_{n} & =n^{n n}
\end{aligned}
$$

then

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{n(r, 0)}{\log m(r, f)}=\infty . \tag{6}
\end{equation*}
$$

Hence

$$
\lim _{r \rightarrow \infty} \sup \frac{n(r, 0)}{r^{\lambda(r)}}=\infty
$$

so that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{N(r, 0)}{r^{\lambda(r)}}=\infty \tag{3}
\end{equation*}
$$

Hence the condition 3.3 is essential.
Theorem 2. If
3.6

$$
\liminf _{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho(r)}}=\beta>0
$$

and
3.7

$$
\frac{N(r)}{r^{\rho(r)}} \rightarrow 0 \text { as } r \rightarrow \infty
$$

Then for $x \neq a, b$,
3.8 $\quad 0<\beta \leqq \liminf _{r \rightarrow \infty} \frac{N(r, x)}{r^{\rho(r)}} \leqq \limsup _{r \rightarrow \infty} \frac{N(r, x)}{r^{\rho(r)}} \leqq 1$.

And since [3]
3.9

$$
0<\limsup _{r \rightarrow \infty} \frac{n(r, a)}{r^{\rho(r)}}<\infty
$$

$$
\text { if and only if } 0<\limsup _{r \rightarrow \infty} \frac{N(r, a)}{r^{\rho(r)}}<\infty
$$

we can easily deduce analogous results for entire functions by putting $b=\infty$ and replacing $N(r, a)$ by $n(r, a)$. See [13].
§ 4. To see whether the converse of theorem 1 and 2 is true or not we note that if $N(r, x) / r^{\lambda(r)} \rightarrow \infty$, then $T(r, f) / r^{\lambda(r)} \rightarrow \infty$ as $r \rightarrow \infty$ also. Hence without any restrictions on $N(r, x) / r^{\lambda(r)}$ we cannot prove anything, in general. We prove the following

Theorem 3.

If
4.1 $\quad \limsup _{r \rightarrow \infty} \frac{N(r, x)}{r^{\lambda(r)}}<\infty \quad$ for $x=a, b, c$.

Then
4.2
$\underset{r \rightarrow \infty}{\limsup } \frac{T(r, f)}{r^{\lambda(r)}}<\infty$.

Imposing more restrictions on $f(z)$ we prove the following

Theorem 4.

If $f(z)$ is a meromorphic function of non-integral order where $p(p \geqq 1)$ is the genus and
4.3

$$
\underset{r \rightarrow \infty}{\lim \sup } \frac{N(r)}{r^{\lambda(r)}}=\alpha<\infty .
$$

Then
4.4 $\frac{\alpha}{2} \leqq \underset{r \rightarrow \infty}{\lim \sup } \frac{T(r, f)}{r^{\lambda(r)}} \leqq 3 e(p+1)^{2} \alpha(2+\log p) \pi \operatorname{cosec} \pi(\lambda-p)$.

Theorem 5.
If $f(x)$ is a meromorphic function of non-integral order and genus $p \geqq 1$, then
4.5

$$
\underset{r \rightarrow \infty}{\lim \sup } \frac{N(r)}{T(r, f)} \geqq \frac{\sin \pi(\rho-p)}{3 e \rho(2+\log p)(1+p) \pi}
$$

4.6

$$
\geqq \frac{\sin \pi(\rho-p)}{3 e(2+\log p)(1+p)^{2} \pi} .
$$

§ 5. S. K. Singh [10] has proved
If $f(z)$ be an entire function of non-integral order, then
5.1 $\quad \underset{r \rightarrow \infty}{\limsup } \frac{N(r, a)}{\log M(r, f)}>0$ for all $a,(0 \leqq|a|<\infty)$.
S. M. Shah [8] has proved that for functions of order less than one

$$
5.2 \quad \lim _{r \rightarrow \infty} \sup \frac{N(r, a)}{\log M(r, f)} \geqq 1-\rho
$$

We here prove
Theorem 6.
If $f(z)$ be an entire function of non-integral finite order and genus p, and
5.3

$$
\underset{r \rightarrow \infty}{\lim \sup } \frac{N(r, a)}{r^{\lambda(r)}}=\alpha<\infty .
$$

Then
$5.4 \frac{\alpha}{\lambda} \leqq \lim _{r \rightarrow \infty} \sup \frac{\log M(r, f)}{r^{\lambda(r)}} \leqq \pi \alpha 3 e(p+1)^{2}(2+\log p) \operatorname{cosec} \pi(\lambda-p)$.

Theorem 7.
If $f(z)$ is an entire function of genus zero and $0<\lambda<1$ and
5.5

$$
\lim \sup _{r \rightarrow \infty} \frac{n(r, a)}{r^{\lambda(r)}}=\alpha<\infty .
$$

Then
5.6

$$
\frac{\alpha}{\lambda} \leqq \limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{r^{\lambda(r)}} \leqq \pi \alpha \operatorname{cosee}(\pi \lambda) .
$$

Theorem 8.
If $f(z)$ is an entire function of non-integral order ρ and genus p, then
5.7 $\quad \limsup _{r \rightarrow \infty} \frac{N(r, a)}{\log M(r, f)} \geqq \frac{\sin \pi(\rho-p)}{3 e(p+1)^{2}(2+\log p) \pi}$.

Theorem 9.
If $f(z)$ is an entire function of order $\rho, 0<\rho<1$ and genus zero, then
5.8

$$
\underset{r \rightarrow \infty}{\lim \sup } \frac{N(r, a)}{\log M(r, f)} \geqq \frac{\sin \pi \rho}{\pi \rho} .
$$

This theorem has been proved by Valirom [12], but we give a different proof by using proximate orders.

§ 6. Proof of Theorem 1.

By 2.5 we have

$$
6.1 \quad \liminf _{r \rightarrow \infty} \frac{T(r, f)}{r^{\lambda(r)}}=1 .
$$

Also for $x \neq a, b$

$$
T(r, f)<N(r)+N(r, x)+0(\log r) .
$$

Hence

$$
\begin{aligned}
1=\underset{r \rightarrow \infty}{\liminf } \frac{T(r, f)}{r^{\lambda(r)}} & \leqq \liminf _{r \rightarrow \infty} \frac{N(r)}{r^{\lambda(r)}}+\liminf _{r \rightarrow \infty} \frac{N(r, x)}{r^{\lambda(r)}} \\
& \leqq \liminf _{r \rightarrow \infty} \frac{N(r, x)}{r^{\lambda(r)}} \\
& \leqq \liminf _{r \rightarrow \infty} \frac{T(r, f)}{r^{\lambda(r)}} \\
& =1
\end{aligned}
$$

and the left hand equality follows.

The right hand inequality follows from the fact
that $N(r, x) \leqq T(r, f)$ for all x and the theorem is proved.
Proof of Theorem 2.
By 1.4 we have
6.2

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho(r)}}=1
$$

and so the right hand inequality is obvious.
To prove the left hand inequality, suppose if possible

$$
\liminf _{r \rightarrow \infty} \frac{N(r, x)}{r^{\rho(r)}}=0 \quad \text { for } \quad x \neq a, b
$$

Hence

$$
\left[\frac{N(r)}{r^{\rho(r)}}+\frac{N(r, x)}{r^{\rho(r)}}\right] \rightarrow 0 \text { as } r \rightarrow \infty
$$

and so

$$
\frac{T(r, f)}{r^{\rho(r)}} \rightarrow 0 \text { as } r \rightarrow \infty
$$

and this contradicts 3.6 and the theorem follows.
Proof of Theorem 3.
Let

$$
\limsup _{r \rightarrow \infty} \frac{N\left(r, x_{i}\right)}{r^{\lambda(r)}}=\alpha_{i} \quad(i=1,2,3)
$$

Then

$$
N\left(r, x_{i}\right)<\left(\alpha_{i}+\varepsilon_{i}\right) r^{\lambda(r)} \quad(i=1,2,3)
$$

We have

$$
\begin{aligned}
T(r, f) & \leqq \sum_{i=1}^{3} N\left(r, x_{i}\right)+0(\log r) \\
& \leqq \sum_{i=1}^{3}\left(\alpha_{i}+\varepsilon_{i}\right) r^{\lambda r}+0(\log r) \\
& =\beta r^{\lambda(r)}+0(\log r) \quad(\beta<\infty) .
\end{aligned}
$$

Hence

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r^{\lambda(r)}} \leqq \beta<\infty
$$

and the Theorem follows.

Proof of Theorem 4.
Since

$$
T\left(r, \frac{\alpha f+\beta}{r f+\delta}\right)=T(r, f) \mathbf{0}(\mathbf{1})
$$

we may suppose $a=0$, and $b=\infty$, without any loss of generality and so we have
6.3

$$
\begin{aligned}
n(r) & =n(r, 0)+n(r, \infty) \\
N(r) & =N(r, 0)+N(r, \infty)
\end{aligned}
$$

6.4

Also we know [5] that
6.5 $\quad T(r, f) \leqq 0\left(r^{p}\right)+3 e(2+\log p)(1+p) \int_{0}^{\infty} \frac{n(t) r^{p+1} d t}{t^{p+1}(t+r)}$

By lemma 1 [2] we have
6.6

$$
\int_{0}^{\infty} \frac{n(t) r^{p+1} d t}{t^{p+1}(t+r)} \leqq(p+1) \int_{0}^{\infty} \frac{N(t) r^{p+1} d t}{t^{p+1}(t+r)}
$$

Setting $S=3 e(2+\log p)(1+p)^{2}$ and since from 4.3

$$
N(r) \leqq(\alpha+\varepsilon) r^{\lambda(r)}=\beta r^{\lambda(r)} \quad(\beta<\infty)
$$

we get

$$
T(r, f) \leqq S \beta \int_{0}^{\infty} \frac{t^{\lambda(t)} r^{p+1} d t}{t^{p+1}(t+r)}+0\left(r^{p}\right)
$$

Put $t=u r$

$$
\begin{aligned}
T(r, f) & \leqq S \beta \int_{0}^{\infty} \frac{(u r)^{\lambda(u r)} r^{p+1} r d u}{(u r)^{p+1}(u r+r)}+0\left(r^{p}\right) \\
& \sim \beta \beta \int_{0}^{\infty} r^{\lambda(r)} \frac{u^{\lambda-p-1}}{u+1} d u+0\left(r^{p}\right), \quad \text { by } 2.7 \\
& \sim S \beta r^{\lambda(r)} \pi \operatorname{cosec} \pi(\lambda-p)+0\left(r^{p}\right), \text { since } 0<\lambda-p<1
\end{aligned}
$$

Hence

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r^{\lambda(r)}} \leqq S \alpha \pi \operatorname{cosee} \pi(\lambda-p)
$$

and the right hand inequality is proved.
The left hand inequality is obvious since $N(r) \leqq 2 T(r, f)$ and the theorem follows.

Proof of Theorem 5.
From 1.7 we have

$$
\underset{r \rightarrow \infty}{\lim \sup } \frac{n(r)}{r^{p(r)}}=H_{1}<\infty .
$$

Also since
6.7

$$
\begin{equation*}
\int_{r_{0}}^{r} t^{\rho(t)-1} d t \sim \frac{r^{\rho(r)}}{\rho} \tag{1}
\end{equation*}
$$

6.8

$$
N(r) \leqq \frac{H}{\rho} r^{\rho(r)} .
$$

From [5] we have
$6.9 \quad T(r, f) \leqq 0\left(r^{p}\right)+3 e(2+\log p)(1+p) \int_{0}^{\infty} \frac{n(t) r^{p+1} d t}{t^{p+1}(t+r)}$.
Applying lemma 1 [2] we get
6.10 $T(r, f) \leqq 0\left(r^{p}\right)+3 e(2+\log p)(1+p)^{2} \int_{0}^{\infty} \frac{N(t) r^{p+1}}{t^{p+1}(t+r)} d t$.

In 6.10, set $S=3 e(2+\log p)(1+p)^{2}$.
Using 6.8 we have

$$
\begin{aligned}
T(r, f) & \leqq 0\left(r^{p}\right)+S \int_{0}^{\infty} \frac{H}{\rho} \frac{t^{\rho(t)} r^{p+1}}{t^{p+1}(t+r)} d t \\
& \leqq 0\left(r^{p}\right)+\frac{S . H .}{\rho} \int_{0}^{\infty} \frac{(u r)^{\rho(u r)} r^{p+1} r}{(u r)^{p+1}(u r+r)} d u \\
& \sim 0\left(r^{p}\right)+\frac{S . H .}{\rho} r^{\rho(r)} \int_{0}^{\infty} \frac{u^{\rho-p-1}}{u+1} d u .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho(r)}} & \leqq S \cdot \pi \cdot \operatorname{cosec} \pi(\rho-p) \frac{H}{\rho} \\
& \leqq S \cdot \pi \cdot \operatorname{cosec} \pi(\rho-p) \cdot \lim \sup _{r \rightarrow \infty} \frac{N(r)}{r^{\rho(r)}}
\end{aligned}
$$

So

$$
\underset{r \rightarrow \infty}{\lim \inf } \frac{T(r, f)}{N(r)} \leqq \frac{\limsup _{r \rightarrow \infty} \frac{T(r, t)}{r^{\rho(r)}}}{\underset{\limsup }{r \rightarrow \infty} \frac{N(r)}{r^{\rho(r)}}} \leqq S . \pi . \operatorname{cosec} \pi(\rho-p)
$$

and 4.6 follows.

Starting with 6.9 and proceeding similarly we have 4.5 and we note that 4.6 is a better inequality than 4.5 , since $\rho<p+1$. Proofs of Theorems 6 and 8 are omitted since they are similar to the proofs of Theorems 4 and 5.

Proof of Theorem 7

$$
\begin{equation*}
\log f\left(z_{3}\right) \leqq r \int_{0}^{\infty} \frac{n(t, a)}{t(t+r)} d t . \tag{11}
\end{equation*}
$$

From 5.6,

$$
n(r, a) \leqq(\alpha+\varepsilon) r^{\lambda(r)}=\beta r^{\lambda(r)}, \quad \beta<\infty
$$

Hence

$$
\begin{aligned}
\log M(r, f) & \leqq r \beta \int_{0}^{\infty} \frac{t^{\lambda(r)}}{t(t+r)} d t \\
& \sim \beta r^{\lambda(r)} \int_{0}^{\infty} \frac{u^{\lambda}}{u(u+1)} d t \quad \text { by } 2.7 . \\
& =\beta r^{\lambda(r)} \frac{\pi}{\sin \pi \lambda} \\
\limsup _{r \rightarrow \infty} & \frac{\log M(r, f)}{r^{\lambda(r)}} \leqq \frac{\alpha \pi}{\sin \pi \lambda} .
\end{aligned}
$$

Left hand inequality is obvious.
Proof of Theorem 9.
From 1.4 we have

$$
N(r, a) \leqq T(r, f) \leqq r^{\rho(r)}
$$

Hence

$$
\limsup _{r \rightarrow \infty} \frac{N(r, a)}{r^{\rho(r)}}=\alpha \leqq 1
$$

we have [11]

$$
\begin{aligned}
\log M(r, f) & \leqq \int_{0}^{\infty} \frac{n(t) r}{t(t+r)} d t \\
& \leqq \int_{0}^{\infty} \frac{N(t) r}{(t+r)^{2}} d t \\
& \leqq \int_{0}^{\infty} \alpha \frac{t^{\rho(t) r}}{(t+r)^{2}} d t \\
& \sim \alpha \int_{0}^{\infty} \frac{r^{\rho(r)} u^{\rho}}{(u+1)^{2}} d u
\end{aligned}
$$

Hence

$$
\begin{gathered}
\limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{r^{\rho(r)}} \leqq \frac{\alpha \pi \rho}{\sin \pi \rho} \\
\liminf _{r \rightarrow \infty} \frac{\log M(r, f)}{N(r, a)} \leqq \frac{\limsup \frac{\log \cdot M(r, f)}{r^{\rho(r)}}}{\limsup _{r \rightarrow \infty} \frac{N(r, a)}{r^{\rho(r)}}} \leqq \frac{\pi \rho}{\sin \pi \rho} .
\end{gathered}
$$

Lastly we note that if we use the properties of lower proximate order and assume

$$
\limsup _{r \rightarrow \infty} \frac{N(r, a)}{r^{\lambda(r)}}<\infty
$$

Then we have

$$
\limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{N(r, a)} \leqq \frac{\pi \lambda}{\sin \pi \lambda}
$$

and since

$$
\frac{\pi \lambda}{\sin \pi \lambda} \leqq \frac{\pi \rho}{\sin \pi \rho}
$$

and so in one way we have a better inequality.

REFERENCES

.M. L. Cartwright

[1] Integral functions. Cambridge 1958. pp. 58.
S. H. Dwivedi
[2] On entire functions of finite order. The Math. Student, Vol. 26, No. 4, 1958. pp. 169-172.
S. H. Dwivedi
[3] Proximate orders and distribution of a-points of entire function. M.R.C. Technical report No. 259. 1961.
S. H. Dwivedi and S. K. Singh
[4] The distribution of a-points of an entire function. Proc. Amer. Math. Soc. Vol. 9, No. 4, 1958. pp. 562-568.
R. Nevannlinna
[5] Eindeutige Analytische Funktionen 2 Aufl. 1953, pp. 227.
S. M. Shat
[6] A note on maximum modulus and zeros of an integral function. Bull. Amer. Math. Soc. Vol. 46, 1940, pp. 909-912.
S. M. Shat
[7] On proximate orders of integral functions. Bull. Amer. Math. Soc. Vol. 52, 1942. pp. 326-328.
S. M. Shah
[8] A note on meromorphic functions. The Math. Student. Vol. 12, 1944.
S. M. Shah
[9] A note on lower proximate orders. J. Indian Math. Soc. Vol. 12, 1948, pp. 31-32.
S. K. Singh
[10] A note on entire and meromorphic functions. Proc. Amer. Math. Soc. Vol. 9, No. 1, 1958.
E. C. Titchmarsh
[11] The theory of functions, 1950, pp. 271.
G. Valiron
[12] Sur le minimum, du module des fonctions entières d'ordres inférieurs a un, Mathematica, Vol. 11, 1935, pp. 264-269.
G. Valiron
[13] The general theory of integral functions, Chelsia 1949, pp. 68.
University of Wisconsin Milwaukee.
(Oblatum 15-8-62).

[^0]: This work was partly supported by the National Science Foundation Research Participation Programme for Summer, 1962, E2/3/47-1251, at the University of Oklahoma, Norman.

