
COMPOSITIO MATHEMATICA

J. G. DIJKMAN
Some intuitionistic remarks about
transformations of sequences
Compositio Mathematica, tome 15 (1962-1964), p. 70-87
<http://www.numdam.org/item?id=CM_1962-1964__15__70_0>

© Foundation Compositio Mathematica, 1962-1964, tous droits réser-
vés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1962-1964__15__70_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Some intuitionistic remarks about transformations

of sequences

by

J. G. Dijkman

1. The transformations of sequences {sn} by infinite matrices
(cm,n) are well known (cf: G. H. Hardy: Divergent Series, Oxford
University Press 1949, Ch. III).
From a given sequence {sn} and a given matrix (cm,n) a new

sequence {tm} is defined by:

Of course such a definition makes sense only if for every m the
series involved are convergent (in some sense).

It is obvious that the type of convergence of the sequence {tm}
depends in general both on the given sequence {sn} and on the
matrix (cm,n).

2.1. In this paper transformations by matrices (cm,n) are

considered, which transform every convergent sequence {sn} into
a convergent sequence {tm}.

Schur (Journal f.d.r. und angew. Mathematik, 151 (1921)
79-111) proved a theorem about this subject (Kojima, Tokohu
M.J. 12: 2912013326 for semi-matrices). We shall analyse the formu-
lation and proof of this theorem as given by Hardy (page 43).

THEOREM : In order that a matrix (cm,n) transforms every con-
vergent sequence {sn} into a convergent sequence {tm} the following
conditions are necessary and sufficient:

(2.1.1 ) ’Iwo icm,.l I is convergent for every m and a number H
exists independent of m with l’O Ic,.,,,l  H for all m,

(2.1.2) for every integer n the sequence {cm,n} is convergent and
limm~oocm,n = 5n, ,

(2.1.3) the sequence {cm} is convergent and limm~oocm = 5 with
Cm = ln’=o Cm, n .
If these conditions are fulfilled ,1’ ,ô,, is absolutely convergent
and the sequence {tm} is convergent with limit value:
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with s = limn~osn.
2.2. From the intuistionistic point of view we are able to prove

if we read positive convergence instead of convergence, but,
surprisingly, difficulties are met in proving the second right-hand
member of (2). (For the intuitionistic definitions of convergence I
refer to A. Heyting: Intuitionism, North-Holland Publ. Comp.
Amsterdam 1956. For the intuitionistic theory of series 1 refer to
M. J. Belinfante’s papers mentioned in Heyting’s book. It may
be useful to observe the difference between the definition of

negative convergence used by Belinfante and the one given in
Heyting’s book).

2.3.1. The proof given by Hardy can almost be rewritten and
we shall see that the absolute convergence of the series l’Oô,, is
not substantial. This is important for it is not possible (nowadays)
to prove the absolute convergence of 1 c5n.

2.3.2. The proof runs as follows:
We prove that the elements tn = =ocm,nsn are defined.

From +limn~oo Sn = s it follows that the sequence {sn} is bounded.
’rhc series Y’Olcn,,nl is positively convergent and this implies
together with the boundedness of {sn} that 1110 n= 0 c.,,,s. is positively
convergent for every value of m. First we restrict ourselves to the
case: s = 0.

Choose an arbitrary value for ~ &#x3E; 0 and take the integer
N = N ( E ) in such a way that: sn  E : 4H for all n &#x3E; N. Take
k &#x3E; N, then we get:

LoCm,n8n being positively convergent we are able to determine
¡VI = NI(e, m) with:

From +limm~oo Cm, n = ôn it follows that thcre is a N2 such that

is bounded).
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Obviously:

and from

it follows:

Now we have reached a point where we can find an integer M such
that

because k and m are mutually independent we obtain:

from this and from Cauchy’s general principle of convergence it
follows that the sequence {tm} is positively convergent.
The general case is reduced to the special case considered by the

conversion: s’n = sn-s and t m = kn=Ocm,nsn.
Then we obtain:

3.1. It may seem natural to suppose that

may be deduced from (3).
It is remarkable that it is possible to construct an example of a

transformation satisfying conditions (2.1.1), (2.1.2) and (2.1.3) for
which however the series 1 ôn is only negatively convergent.

It will be obvious that the absolute convergence of the construct-
ed example is out of discussion.

3.2. To construct the promised example consider the decimal
expansion of n.
Let i indicate the sequence consisting of the integers 0 1 2 ’ ’ .8 9.



73

We define:
If no sequence T occurs in the first m digits after the decimal

point in n, define: cm,n = 0 for all n.
If in the first m digits after the decimal point in n the sequence

i occurs and if k is the index of the 9 in the first sequence T that

occurs in the decimal expansion of n, then we take: Cm, n = 1/A for
n  k, cm,n = 20131 for n = k and cm,n = 0 for n &#x3E; k.

We begin by verifying that the conditions (2.1.1), (2.1.2) and
(2.1.3) are fulfilled.
For every value of m it is possible to verify the occurrence of r

in the first m digits of n.
If z does not occur in the first m digits, we have: !nlcm,nl I = 0 ;

when r occurs in the first m digits we may write

This means that the series Ilcm,nl I is positively convergent for
every value of m, and we can choose H = 3 (cf. (2.1.1)) .
From the absolute positive convergence it follows that the series

I=ocm,n is positively convergent for every m.
Now we consider ôn = +lim~oo cm,n.

We have to prove that dn is defined by ôn. = +limm~oocm,n for
every fixed value of n. Therefore, we consider ô. (n fixed). The
existence of ô. becomes clear by calculating it as accurately as
desired. Take a value e &#x3E; 0, an integer mo &#x3E; 1 jc with mo &#x3E; n, and
calculate the first mo digits of the decimal expansion of n. This
calculation informs us about the occurrence of i among the mo
digits of n. Does r occur, then we know all Cm, n and dn has one of the
values 1/k, -1 or 0 and we can decide which of them.

If 7: does not occur, then from mo &#x3E; n and mo &#x3E; 1 /s it follows
0 &#x3E; Ô,.  ~. From Cm = ICm,n = 0 for every value of m it follows :
à = +lim cn = 0. We now consider the series Ic5n.
From the definition of the matrix we see:

ô. = 0 if r does not occur in the decimal expansion of x;
ôn = l/k for n  k if r occurs;

an = -1 for n = k;
ôn= 0 for n &#x3E; k;

and it is obvious that the series Y ôn is negatively convergent with
limitvalue 0.

This example shows that the series llô,,l need not be positively
convergent when the matrix (cm,n) fulfills the conditions required
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by the theorem. The series Ilô,,l is negatively convergent with
limitvalues 0 and 2.

We have thus derived an example for which it is not allowed
to write

However, it follows that the two series occurring in the righthand
member of (4) have the same type of convergence. This means:
they are simultaneously positively or negatively convergent or
non-oscillating. In the same way it follows that we shall not succeed
in proving the positive convergence of .2c5nsn in the case s *- 0.

3.3. In section 9 attention will be paid to the necessity of the
conditions mentioned in the theorem.

4.1. A transformation satisfying the conditions (2.1.1), (2.1.2)
and (2.1.3) may change the character of convergence of a negative-
ly convergent sequence. This will be elaborated now.
To this aim we shall construct an example of a negatively

convergent sequence, which is transformed into a twofold negative-
ly convergent sequence.

It is possible to extend this example to an example of a trans-
formation showing that a negatively convergent sequence may be
transformed into a p-fold negatively convergent séquence. Hère p
is an arbitrarily chosen natural number.

4.2.1. To construct the example we take the matrix (cm,n) as
defined in 3.2. and we define a sequence {sn} in the following way:

If z does not occur in the first n digits of n then we define Sn = 1;
if i occurs in the first n digits of n and if k is the index of the 9

in tlie first sequence r that occurs then we define: sk = (-l)k and
Sn = 1 for n &#x3E; k.

For cvery value of in the element tm == .2 Cm, n sn of the séquence
{tm} is defined. However, this sequence is twofold negatively
convergent, for if i does not occur in the decimal expansion of yr,
then tm = 0 for every m and the limitvalue of the sequence is 0,
but if T occurs and k has the indicated meaning, then tm = 0 for
n1, &#x3E; k if IL is even and tm = 2 for m &#x3E; k if k is odd.

4.2.2. The possibility that there are more sequences T in the
decimal expansion of n enables us to construct a matrix which
transforms a negatively convergent séquence into a p-fold negative-
ly convergent sequence.

4.3. The examples given have been constructed in such a way
that it is not allowed to say that the series .2c5n involved are positive
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ly convergent. The proof in 2.3.2. could be maintained because
only the boundedness of Ylô.1 | was used.

We saw an example transforming a negatively convergent
sequence into a twofold negatively convergent sequence. In this
example a series lô,, appeared of which we do not know the positive
convergence.
Now we investigate transformations of bounded negatively con,-

vergent sequences supposing Ilô.l is positively convergent.
By this suppletion of the conditions we prove the invariance of

the type of negative convergence.
Obviously the righthand-member of (2) is true in this case.

5.1. THEOREM : In order that the matrix (cm,n) transforms every
bounded negatively convergent sequence into a negatively con-
vergent sequence, the following conditions are sufficient:

(5.1.1.) 1"0 olc,.,,,,,l is positively convergent for every m and a
number H exists independent of m with =olcm,nl I  H.

(5.1.2.) for every integ er n the sequence {cm,n} is positively
convergent and +limm~oo cm,n = ôn;

(5.1.3.) the sequence {cm} is positively convergent and
+Iim,n_,,.cm = ô with cm = n= .Imm-+ooCm - u with Cm - kn=OCm,n,

(5.1.4.) Ylô.1 is positively convergent.
PROOF: Suppose the sequence {sn} is bounded and negatively

convergent with -limn~oo Sn = s.
Then we have: (3B)(Vn)(lsnl  B).
From (5.1.4.) it follows: ~nsn is positively convergent and

(5.1.1) leads to the positive convergence of =ocm,n for every m.
It is easily seen that =olcm,nsnl is positively convergent. Hence
it is allowed to def ine tm = Y-InO=Ocm,,nsn. · We intend to prove:
the sequence {tml is negatively convergent to t with

First make the restriction s = 0.
The sequence {sn} is negatively convergent to 0, hence

(for H: see (5.1.1)).
From: (Vn)(ISN+nl  e : 4H) it follows
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for: .

From (5) it follows:

From: (Vn)(lsN+nl  e: 4H) we obtain:

On account of (5.1.2) it is possible to construct an integer M(N, s)
for every N in such a way that

holds. for every m &#x3E; M.

Combining the results (6), (7) and (8)

is obtained.
The positive convergence of Ioc5nsn is known. Let a be the

limitvalue of this series then from (9) it follows:

and this proves the negative convergence of the sequence {tm} to a.
The general case is treated by applying the conversion s’n = s"-s.

5.2. The conditions (5.1.2) and (5.1.3) may be weakened by
supposing negative convergence of the sequences {cm,n} (n fixed)
and {cm} instead of positive convergence. Then we obtain the
extension:

THEOREM : In order that the matrix (cm,n) transforms every
bounded negatively convergent sequence into a negatively con-
vergent sequence, the following conditions are sufficient:

(5.2.1) = (5.1.1), 
.

(5.2.2) for every integer n there exists a c5n such that the
sequence {cm,n} is negatively convergent to ôn; -limm~oocm,n = ôn ,

(5.2.3) the sequence {cm} is negatively convergent to c5 with
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(5.2.4) £[ô[ is positively convergent.
In particular: -limm-+ootm = t = ôs+ zroô(s-s) with s =

= -limn-+oo sn.

PROOF: {sn} is a bounded sequence, hence:

For every m we have:

and from (5.2.1) it follows:

hence

proving that t,. = zro Cm,nSn is defined for every m.
Consider the case: s = 0. We have to prove:

’The series Y’,, ô. s. is positively convergent on account of (5.2.4)
and (10).
From the sequence {sn} we know:

From: (Vn)(lsN+nl  a/4H) it follows for k &#x3E; N:

and now we may say:
From (Vn)(lsN+nl  s/4H) it follows:
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and we may say:

because ISnl  B.

From Vn(ISN+nl  eJ4H) it follows too:

for

From (11), (12), (13), (14) and the evident relation:

we obtain:

The series Y ônsn is positively convergent and its limitvalue is

denoted by t. Combining this with (15) we have:

and this is equivalent to

proving the statement in the case s = 0.
The general case is treated by considering sn = Sn -8.
Then we know -lim sn = 0 and we obtain:

hence:

5.3. By weakening one or some of the conditions of the original
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theorem we have derived some results. Up to now we have not
weakened the conditions (2.1.1) = (5.1.1).

Accepting the condition: (3H){Vm)(==olcm,nl  H), then

from the intuitionistic point of view we have the possibilities that
lÎn-olcm,.l is negatively convergent or non-oscillating for fixed m.

In this direction some theorems are developed in the sections
6, 7 and 8.

6. THEOREM : From

6.1. Inlcm,nl I is negatively convergent to ym for every m,

6.2. Inlcm,nl  H with H independent of m,
6.3. {sn} is a positively convergent sequence,

it follows:
the sequence Incm,nsn is negatively convergent for every m.

PROOF: Put ym = I=olcm,nl . Sn and j5$ = I==olcm,nl. ·
Consider the sequences

We prove that every sequence {am,v} with m fixed is positively
convergent. To this aim choose an - &#x3E; 0 and calculate a N in
such a way that 18n-sl  E/4H for n &#x3E; N. Then we have:

and for every m the positive convergence of the sequence {am, ,l
follows from Cauchy’s general principle of convergence. (Observe
that the convergence is uniform in m).

In order to prove the convergence of the series !nfcm,nlsn the
limitvalue of the series ought to be calculated. We state that
!nlcm,nlsn is negatively convergent to am+sYm with am =
+limft-+OO am, n. ,

Therefore we prove: 

We know +limp-+oo am,’P = am, hence to every el &#x3E; 0 an integer N1
can be calculated with the property lam-am,.,,!  el for p &#x3E; Nl .
Take N+r &#x3E; Nl, then 
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hence:

From 6.1 we know:

and combining this with (16) we have:

and this relation is equivalent to:
the series !nlcm,nlsn is negatively convergent to sYm+am.

7.1. DEFINITION: The series !Icm,nl I are called uniformly non-
oscillating with respect to m if

7.2. THEOREM: In order that the matrix (cm,n) transforms a
bounded sequence {sn} into a non-oscillating sequence {tm} the
following conditions are sufficient:

(7.2.1) 1"0 0 1 c., . are uniformly non-oscillating with respect to m,
(7.2.2) the series _Y’oc,.,,,s. is positively convergent.

PROOF. Choose the integers M and r in an arbitrary way then
from

it follows:
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Applying (17) to (18) we obtain

proving that the sequence {tm} is non-oscillating.
8.1. In the following we shall use the theorem:

If the sequence {sn} is non-oscillating then the sequence is nega-
tively bounded, hence: uu(38)(Vn)([s[  B).
The easy proof will be omitted.

8.2. THEOREM: If

(8.2.1) the sequence {sn} is non-oscillating and
(8.2.2)

then for every fixed m the séquence {tm,p} is non-oscillating with

PROOF: We choose an arbitrary fixed value for m and we have:

Using the theorem mentioned in 8.1 we obtain

From (19) we see, that the sequence {um,s»} with um,p = 9
is for every m a monotone non-decreasing bounded sequence;
hence the sequence {um,p} is non-oscillating for every fixed m
(cf. A. Heyting, l.c. page 110, theorem 4).
So we have:

Combining (20) and (21) we obtain:

and omitting P : (Vm) Il (Ve) -i -i (3N) (Vq) (/t""N+t-tm,NI  e)
which is equivalent to: 

proving the statement that the sequence {tm.n} is non-oscillating
for every fixed m.



82

8.3. For the transformation of a non-oscillating sequence {sn}
by a matrix (cm,n) a theorem resembling that of Schur can be
proved.

THEOREM: If {sn} is a non-oscillating sequence transformed by
a matrix (cm,n) ,which fulfills the following conditions

then we have:

PROOF:

We denote the four terms in the righthand member of this inequal-
ity bv I, II, III and IV. First consider II.
The sequence {sn} is non-oscillating, hence:

and this leads to

Now we have obtained:

On account of 7.2. we may assert:
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in this result we may write of course N +0’, with a an arbitrary
integer, instead of N.

Putting k = p and taking care that N &#x3E; p then we obtain

From (8.3.2) it follows that for every given p:

combining this with the foregoing results we obtain

Applying 8.3.2. we obtain:

from which it is obvious that A and B may be replaced by greater
values and the same applies for M and N and this leads to:

which is equivalent to:

9.1. We now return to the necessity of the conditions mentioned
in the theorem of section 2.1.

It already turned out, that the conditions are not sufficient to
maintain the last part of the statement but they are sufficient to
prove the essential parts of the theorem.
Now we shall investigate the necessity of the conditions. Hardy

(cf. Divergent Series page 45) proved the necessity of the condi-
tions (2.1.2) and (2.1.3) but the proof of the necessity of (2.1.1) is
based on the principle of the excluded middle.

In the following an example is constructed of a transformation
by an infinite matrix (cm,n) which transforms every positively
convergent sequence {sn} into a positively convergent sequence
{tm} but this matrix has the property that the series !Icm,nl | is

twofold negatively convergent.
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9.2. The sequence {pp} will be defined as follows: if the sequence
T( cf. 3.2.) does not occur in the first p digits of n, then we take
P1J = 1 /p, and in the other case, when r occurs in the first p digits
of a, then we define pp = 1 /k for p &#x3E; k ( k has the same meaning
.as in 3.2) Now we can define p by p = limp-+oo pp.

Finally define:

cm,n = (-1 ) n P if T does not occur in the first m digits of n
cm,n = 0 if i occurs in the first m digits of n.
We prove: Every positively convergent sequence {sn} with

Iimn-+oo Sn = s is transformed by tm = IoCm,nSn into a positively
convergent sequence {tm}.
At first we prove that Y-10 ,n- 0 cm,,n s. is positively convergent for m.

Therefore take the partial sums tm,’P = I:-ocm,nsn and consider
Itm,JJ+q-tm,I. From the positive convergence of {sn} it follows:
(22) (Ve)(3N)(Vv &#x3E; N)Bffl(lsv+l’-svl  8)
Choose a fixed value for e and calculate N in such a way that (22)
and ISnl  a - N for n &#x3E; N are satisfied. Then it is possible to
determine the occurrence or non-occurrence of T in the first N

digits of n. If r occurs in the first N decimals then we have:
tm,1J+q-tm, = 0 for all p &#x3E; N.

If z does not coeur in the first N decimals then we prove:

Suppose:

It is impossible that T occurs in n, for if T occurs then we know k
(cf. 3.2) and we have:

Because we have: N  k we can deduce the following inequali-
ties :
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b) for p + q&#x3E;k: tm,,,+q-tm,,,1 = II:tcm,nsnl I = II:+lcm,nsnl and
in the same we obtain:

We see that from the hypothesis Itm,,,+q-tm,,,1 &#x3E; 21/2s it follows.

that it is impossible that T occurs in n, but then we have p = 0 and
this means cm,p = 0 for every m and p. However, the conclusion

tm,p = 0 for every m and p contradicts the hypothesis
Itm, "+q-tm,,,1 &#x3E; 2te.
The hypothesis Itm,,,+q-tm,,,1 I &#x3E; 2te for p &#x3E; N lead to a contra--

diction, hence Itm,,,+q-tm,,,1 |  3e.

Now we have proved that +Iim.. t," . exists for every value of
m. The sequence {tm} is a sequence of equal elements because all
rows of the matrix (Cm, n ) are equal, hence the sequence {tm} is

positively convergent and by this we have proved:
Every positively convergent sequence {sn} is transformed into a

positively convergent sequence {tm} by the given matrix (cm,n)
However, the series Inlcm,nl are twofold negatively convergent

for every value of m and the limitvalues are 0 and 1, hence it is not
allowed to state the positive convergnce of this series.
From this example it is obvious that the required convergence

of the series mentioned in (2.1.1) is not an essential requirement in
the theorem.
A theorem with intuitionistic weaker conditions and stating the

same is the following:

10.1 THEOREM : In order that a matrix (cm,n) transforms every
positively convergent sequence {sn} into a positively convergent
sequence {tm} the following conditions are sufficient:

REMARK: Condition (2.1.1) has been split up into (10.1’) and
(10.1" ). The condition (10.1’) tells us that the series ncm,n are
positivcly convergent for every m.
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If D’m,v = n ICm,nl then (10.1") is the translation of: a

number H exists with Qm, y  H for all m and v. This does not

pronounce any convergence of the sequence {D’m,v} (m fixed).
PROOF: We consider the special case +limoosn = 0. Then we

have:

We define:

When we fix m for a given a we can choose N in such a way that
(10.1’) and (23) are satisfied.
From (10.1’) and (23) it follows:

hence the sequence {tm,p} is positively convergent for every m
and the limitvalue of these sequences {tm,p} are indicated by tm.
In the same way as in 2.3.2 we prove the existence of +lim tm .
In the general case introduce s’,n = Sn-S and tm = !ncm,ns:. . We
prove the convergence of {tm,,,} for p --&#x3E; oo.

Evidently:

Choose E &#x3E; 0 and calculate NI in such a way that ISn-sl  elR
for all n &#x3E; NI.
By (10.1’) we can choose a number N2 in such a way that

Isi . II:tcm’fJl I  efor aIl n &#x3E; N2.
When we take p &#x3E; max (NI, N2) we have: tm, +Q - tm, D ( C 2E

hence the sequence {tm,fJ} is positively convergent for every fixed
m and now we may write:

hence
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This proof uses only the uniform boundedness of the series

Inlcm,nl without supposing anything as to convergence..
10.2. As to the necessity of the conditions 1 refer to section 9.1.

Of course (10.1’), (10.2) and (10.3) are necessary. 1 have not suc-
ceeded in proving the necessity of (10.1’) nor in constructing an
example with weaker conditions.

1 wish to thank Prof. dr. A. Heyting for his comments during
the preparation of this paper.
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