@article{CM_1969__21_3_271_0, author = {West, James E.}, title = {The diffeomorphic excision of closed local compacta from infinite-dimensional {Hilbert} manifolds}, journal = {Compositio Mathematica}, pages = {271--291}, publisher = {Wolters-Noordhoff Publishing}, volume = {21}, number = {3}, year = {1969}, mrnumber = {256420}, zbl = {0181.51303}, language = {en}, url = {http://archive.numdam.org/item/CM_1969__21_3_271_0/} }
TY - JOUR AU - West, James E. TI - The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds JO - Compositio Mathematica PY - 1969 SP - 271 EP - 291 VL - 21 IS - 3 PB - Wolters-Noordhoff Publishing UR - http://archive.numdam.org/item/CM_1969__21_3_271_0/ LA - en ID - CM_1969__21_3_271_0 ER -
%0 Journal Article %A West, James E. %T The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds %J Compositio Mathematica %D 1969 %P 271-291 %V 21 %N 3 %I Wolters-Noordhoff Publishing %U http://archive.numdam.org/item/CM_1969__21_3_271_0/ %G en %F CM_1969__21_3_271_0
West, James E. The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds. Compositio Mathematica, Tome 21 (1969) no. 3, pp. 271-291. http://archive.numdam.org/item/CM_1969__21_3_271_0/
On a theorem of Klee, Proc. AMS 17 (1966), 1401-4. | Zbl
[1]Negiligible subsets of infinite-dimensional manifolds, Compositio Math. (to appear). | Numdam | MR | Zbl
, and [2]Any Hilbert space of infinite dimension is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Ser., Sci. Math. Astron. Phys. 14 (1966), 27-30. | Zbl
[3]Homology properties of arbitrary subsets of Euclidean spaces, Trans. AMS 62 (1947), 248-271. | Zbl
[4]Convex bodies and periodic homeomorphisms in Hilbert space, Trans. AMS 74 (1953), 10-43. | Zbl
[5]Introduction to Differentiable Manifolds, Interscience, New York, 1962. | MR | Zbl
[6]Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16. | MR | Zbl
[7]Lectures on the Differential Topology of Infinite Dimensional Manifolds, Mimeographed Notes by S. Greenfield, Brandeis University, 1964-1965.
[8]