A result concerning meromorphic solutions in the unit disk of algebraic differential equations
Compositio Mathematica, Tome 22 (1970) no. 4, pp. 367-381.
@article{CM_1970__22_4_367_0,
     author = {Bank, Steven},
     title = {A result concerning meromorphic solutions in the unit disk of algebraic differential equations},
     journal = {Compositio Mathematica},
     pages = {367--381},
     publisher = {Wolters-Noordhoff Publishing},
     volume = {22},
     number = {4},
     year = {1970},
     mrnumber = {280767},
     zbl = {0209.11501},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1970__22_4_367_0/}
}
TY  - JOUR
AU  - Bank, Steven
TI  - A result concerning meromorphic solutions in the unit disk of algebraic differential equations
JO  - Compositio Mathematica
PY  - 1970
SP  - 367
EP  - 381
VL  - 22
IS  - 4
PB  - Wolters-Noordhoff Publishing
UR  - http://archive.numdam.org/item/CM_1970__22_4_367_0/
LA  - en
ID  - CM_1970__22_4_367_0
ER  - 
%0 Journal Article
%A Bank, Steven
%T A result concerning meromorphic solutions in the unit disk of algebraic differential equations
%J Compositio Mathematica
%D 1970
%P 367-381
%V 22
%N 4
%I Wolters-Noordhoff Publishing
%U http://archive.numdam.org/item/CM_1970__22_4_367_0/
%G en
%F CM_1970__22_4_367_0
Bank, Steven. A result concerning meromorphic solutions in the unit disk of algebraic differential equations. Compositio Mathematica, Tome 22 (1970) no. 4, pp. 367-381. http://archive.numdam.org/item/CM_1970__22_4_367_0/

R. Nevanlinna [1] Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthiers-Villars, Paris, 1929. | JFM | Zbl

S. Saks AND A. Zygmund [2] Analytic Functions, Warsaw, 1952. | MR | Zbl

M. Tsuji [3] Canonical product for a meromorphic function in a unit circle, J. Math. Soc. Japan 8 (1956), 7-21. | MR | Zbl

G. Valiron [4] Fonctions analytiques et équations différentielles, J. Math. pures et appl. 31 (1952), 292-303. | MR | Zbl

G. Valiron [5] Fonctions analytiques, Presses Universitaires de France, Paris, 1954. | MR | Zbl