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COMPLETE INDEX SETS OF
RECURSIVELY ENUMERABLE FAMILIES

by

T. G. McLaughlin

1. Introduction

This paper is an adjunct to [2]. In [2, § 2], we remarked that the index
set G(F) of a recursively enumerable family & of classes of r.e. sets
can be Yo complete for 1 < n < 5 or []) complete for 1 < n < 4. Here
we shall give specific examples which verify that remark. All unexplained
notation and background terminology in the present paper should be
read according to the conventions laid down in [2, § 1]. We wish to take
the opportunity to correct a minor technical error in [2]. The function
{o referred to in the introductory section of [2] should not be alleged to
be a fotal recursive function, but should rather be specified as a partial
recursive function with 6{, = {eIWeF is a nonempty family consisting of
nonempty classes}. The only point at which {, enters into a proof in [2]
is at the beginning of the proof of Lemma A, where, under the alias of ,
it is mistakenly treated as being defined for all arguments e. However,
it is easily seen that even with its domain limited as indicated above,
{ (= o) still permits the function £ of [2, Lemma A] to be taken total
recursive; none of the remaining discussion in [2] need then be modified
or even reworded. (There are alternative ways of mending the error;
but the way just indicated seems most direct.)

2. Complete index sets

Throughout this section, we let # denote a partial recursive function
with the property that (Vx)[W, # 0= n(x)e W.]; and we let u denote
a recursive function such that (Vx)[W,, = {x}1

PROPOSITION 1. If & is an r.e. family of classes then its index set,
G(F),is Y 3.
PROOF. Let # = {WEl|ee W,}. Then
n e G(F) < (Ie)[e € W, and WS = Wy ]
<> (Je)[e € Wy and (V,)[W; € WY < W, e W(]].
83
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But W;e W< (3r)lre W, and (Vs)[se W;<>se W,]]. Hence, by
means of the usual prenex transformation procedures, W; e WE is seen
to be a y 3 predicate of j and k. It follows, again by the standard prenex
operations, that n e G(#)is a ) ¢ predicate of n. Q.E.D.

PROPOSITION 2. Let W = {Wflee N}. Then W  is an r.e. family and
G(W") is recursive.
Since G(#") = N, Proposition 2 is obvious.

PROPOSITION 3. W~ and @ are the only r.e. families F for which G(F)
is recursive.

Proor. The proposition is a precise analogue of a result of Rice’s
concerning classes ([3, Corollary B to Theorem 6]); and the proof
follows the proof of Rice’s result given in [1]. Thus, suppose & is a
family of r.e. classes such that G() is recursive. Suppose further that
neither & nor #— % is empty. Now, either 0 F or Qe W —F; let us
first suppose that e #— % . Let Q be a fixed non-recursive r.e. subset of
N; and let WE be some fixed element of %. Let g be a recursive function
such that ne Q= Wy, = W, and n¢ Q = W,,, = 0. Then, since
W, # 9, we have ne Q <> g(n) e G(¥). But therefore Q is recursive:
contradiction. A similar contradiction arises if we assume 0 € F, since
if G(F) is recursive then so also is G(#— ). Hence either # = # or
& =9.Q.E.D.

REMARK. The proof of Proposition 3 in fact shows that if # # 0 &
0 ¢ F then every Y set is many-one reducible to G(). (Indeed, they
are all one-one reducible to G(&), since g can be taken one-one.)

PROPOSITION 4. Let F = {WF|(3y)ly e W, and W, # 01}. Then F,
is an r.e. family and G(F ) is Y5 complete.

Proor. Clearly, we have
(Vn)lne G(F,) <> (3y)3z)[ye W, and ze W,]];

therefore G(F,) is Y« . A fortiori, F is an r.e. family. Next, it is easy
to see that there exists a recursive function ,(x, y) such that

(YWV2)(YX)YY)[@ho s, (W5 X5 ¥)

is defined <> T;(f, z, w)]. Let w(x) be a recursive function such that

(V) [Way = U W]

ZEX

Then, since (Yf)[W; = {z|(3w)T,(f; z, w)}], we have that
o(&1(Yo(fs m)) € G(Fo) <> ne Wy;
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here and subsequently, {, is asin § 1 of [2]. Thus G(F,)is Y § complete.
(Alternatively, note that @ ¢ & # 0 and use the remark following the
proof of Proposition 3.) Q.E.D.

PROPOSITION 5. Let #, = {0, {0}}. Then & is an r.e. family and
G(#) is []? complete.

PrOOF. Since every finite family of r.e. classes is r.e., & is an r.e.
family. We can easily construct a recursive function ¥, (x, y) such that

(YW)(V2)(YX)(Y9)[ 0511, (W, X, y) is defined < Ty(f, z, x)].

Therefore n({,(¥1(f, n))) € G(#) < (Vx) = Ty(f, n, x), so that if
G(#,) is []] then it is [ [ complete. (Alternatively, note that § ¢ #—F
# ¢ and use the remark following the proof of Proposition 3.) But,
since ne G(F;) < (Vx)(Vy)[xe W,=>y¢ W,], we have that G(F;)
is indeed [} and therefore [ ]} complete. Q.E.D.

REMARK. The alternative proofs of completeness indicated for Proposi-
tions 4 and 5 show that we could have taken % = {WS|W, # 0} for
Proposition 4 and & = {§} for Proposition 5. We prefer, however,
the more involved choices of %, and %, since then the proofs can be
given the common format shared by all the later proofs (with the single
exception of our proof of Proposition 8).

PROPOSITION 6. Let %, = {WE|0e WE}. Then %, is an r.e. family
and G(%,) is Y3 complete.

PROOF. %, is r.e., since %, = {WEI(Af)IWE = W§ U {9}1}. Next,
since ne G(F) <> (3j)[je W, and (Vz)(z ¢ W;)], it is easily seen by
routine prenex-form manipulation that G(%,) is Y 3. To show that
G(#,) is Y3 complete, we need only construct a recursive function
¥,(x, y) with the property that

(NEMEW)(V2) — TS 1, w, 2) < (30) ) 00y, (v 15 ¥) = B)];

for then we have that ne the fith Y5 set <> o({;(¥,(f; n))) € G(F,).
To obtain /,, we first construct an auxiliary partial recursive function
v by stages, thus:
i < <
b (0 1y 7) { 0, if (‘Vw <v)(3z = $)T(f, n, w, z),
undefined, otherwise;

and we set

0

Dj",n =as U D;',n'
s=0

Clearly, v;,, is partial recursive uniformly in the parameters f and n;
so let ¥,(x, y) be a recursive function such that
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(A Pair,m = O,

From the definition of v ,, it is easy to see that, for each pair {f, n),

@w)(¥Vz) = T,(f, n, w, z) <> (Hv)(au)(é(p,;”,z(f,,,)(v, u,y) =90).
Hence G(%) is ¥ 3 complete. Q.E.D.

PROPOSITION 7. Let F5 = {{N}}. Then %, is an r.e. family and
G(#) is []3 complete.

PROOF. & is r.e. since it is a finite family of r.e. classes. Since
neG(F) = W, # 0 and (V2)lze W, = (VK)(k e W,)]]

and since W, # 0 is a 2‘1) predicate of n, we see by the usual prenex
transformation procedures that G(%) is []5. We shall construct a
recursive function y5(x, y) with the property:

(V2R [P3cr, (. X, 3) is defined < () T3(/; 2, 3, u)].
Since

z e the f-th []3 set <= (Vy)(Qu)To(f; 2, y, u)
g (VW)(vx)[é(pg/g(f,z)(Wa X, ,V) = N],

the function 5,5 will then witness the [[J completeness of G(Z;).
The required function ¥; is very simply obtainable via a stage-by-stage
construction of an auxiliary function 7: at stage s we set

7,2 = {W: %, 3, 001@u = )To(f, 2y, w)}s

for all pairs (f,z); then we take 1, = (JZ¢1}, .. Obviously, the
construction of 7, , is effective uniformly in the parameters f and z;
i.e., there is a recursive function ¥ such that (Vf)(Vz)[ry,. ~ @},s,5]-
V5 as so specified is plainly an indexing function of the kind that we
require, and hence G(%;) is [[3 complete. Q.E.D.

PROPOSITION 8. Let #, = {{A}|A is a cofinite subset of N}. Then F,
is an r.e. family and G(%,) is Y3 complete.

Proor. The class COF of cofinite subsets of N is r.e.; hence &, is r.e.
since %, = {W,{,)|W,e COF}. Now, it is shown in [4] that the set
C = {e|W,e COF} is }J complete. But hence G(&,) is also Y 3 com-
plete, provided that it is } 3 at all; for if 4 is a ) 3 subset of N and f is
a recursive function such that ne 4 = f(n)e C and n¢ A = f(n) ¢ C,
then ne A= u(B(n))e G(#) and n¢ A= u(f(n)) ¢ G(#,). To see
that G(%,) is )3, we first note that the predicate (Vz)[ze W, = W, =
W,]lis a H‘z’ predicate of n and e, and we then apply the standard prenex
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operations to the right-hand side of the equivalence ne G(%,) <
[W, # 0 and (3e)[ee C and (Vz)[ze W, = W, = W,]]]. Thus, G(#)
is 3'3 complete. Q.E.D.

PROPOSITION 9. Let F5 = {WE{W;| W, is finite} = WE}. Then Z; is
an r.e. family and G(%) is [|3 complete.

ProoF. The class {W;| W; is finite} is r.e.; hence, since
Fs = {WE@EK)WS = W U {W;| W, is finite} ]},

it is easily deduced that & is an r.e. family. To show that G(%;) is

3, we make use of a ‘canonical enumeration’ of the class {W;|W; is
finite}. The particular enumeration that we shall apply is defined (as in
[5, p. 70]) as follows:

1
Do = 0; Dy sy = {ky, -+ ki), where n+1 =mz=:12k"'
with ky < k, < -+ < k. Itis easily verified that the predicate D; = W,
is a )] predicate of j and k, and that the predicate x € D; is a recursive
predicate of x and j. Now, we have

ne G(#) < (Vj)3Am)[me W, and D; = W,]
< (Vj)@m)[me W, and D; = W,, and W,, = D;];
hence, by routine prenex manipulations we obtain a l_[g predicate form

for G(%;). We shall construct a recursive function y4(x, y) such that,
for every pair of numbers {f, n), we have

(V2)@W)(¥y) = Ts(f, 1, 2, w, ) <> (V)EDEK) 805z, m(l: ks u) = D;].
It is then obviously the case that

n e the f-th []3 set < o({,(Y4(f, n))) € G(F),

where o is as in the proof of Proposition 4. Thus, the existence of such

a function , implies [[3 completeness of G(Z). In order to specify

V4, we shall define an auxiliary partial recursive function T by stages, as
follows:

. e < .

sk, ) = { 0, if ueD; orif (Ay £ )T5(f, n, j, k, y),

undefined, otherwise;
0
= =S
Tpn =ar U T
s=0

It is obvious that the definition of 7 , is effective uniformly in the param-
eters f and n; hence, there is a recursive function Y 4(x, y) such that
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(Vf)(vn)[(P;A(f, n = %f, "] :

But then 5<p,,3,4(f,,,)( J»k, u), for a given pair {j, k), is either N or D;,
according as (Iy)T5(f; n, Jj, k, ) or (Vy) — T5(f, n,j, k, y). Thus, ¢, has
the required property, and so G(%) is []3 complete. Q.E.D.

Before stating Proposition 10 we remind the reader that p, denotes
the n-th prime number in order of magnitude, starting with p, = 2. We
shall denote by P, the set {p}'|m e N—{0}} of positive powers of p,.

PropoSITION 10. Let % = {WE|@An)[{W;|W; is a finite subset of
P} < WEIY. Then F is an r.e. family and G(Z5) is ¥ q complete.

Proor. It is easily demonstrated that there is a recursive function
x(x, y), with y(n, y) one-to-one for each n, such that (Va)[{D,,, )|y € N}
= {W,| W is a finite subset of P;}]. Hence % is r.e., since

‘a}; = {Wec|(3f)(5|n)[Wf = Wf v {Dx(n,y)ly € N}]}'
Next, we observe that
ne G(%) < (3k)(Vj)@m)me W, and D, ;) = W,].

Therefore G(%) is Y.5. To show that G(Z) is Y4 complete, we need
only make a slight modification of our above proof that G(%) is []3
complete. Thus, we begin by defining

0, if ze D,y j, orif 3w £ )T (f, n, k, j, y, w),

o~
7onlks s v, 2) undefined, otherwise;

and we then set
s o]
Cf,n =as U C;‘,n:
s=0

for all pairs {f, n). Clearly, {, , is partial recursive uniformly in f'and #;
so there is a recursive function £(x, y) such that

(M) 0ecr,m = Cronl-

Let {,(f, n) be a recursive function such that

(Vf)(vn)[‘P?z(f,n)(”z(ka J)’ ¥, Z) = ¢g(f,n)(ks j’ Vs Z)],

7, is here a recursive pairing function as in [2, § 1]. Then, for all 5-tuples
{fon, k,j, v, we have 897, s, »(m2(k, ), y, z) = either N or D, ; ac-
cording as (Iw)T,(f, n, k, j, y, w) or (Yw) — T4(f, n, k, j, y, w). It follows
that, for every pair of numbers {f, n), we have
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@RV )EY)Yw) = Tu(f, 1, ks iy 3, W)
< [(VE)(V/)(VP)(Va)(Vy)(p # k
= 5(0432(f,n)(“2(1’a 4), ¥, z) # Dy, j) and
ER)YVNE60% s, m(ma(k, ), 35 2) = Dy, p11-
Therefore if we define Y 5(x, y) by ¥5s = w{,{,, we obtain the equiva-

lence: nethe f~th Y § set <> yi5(f; n) € G(F). Thus G(F) is Y 4 com-
plete. Q.E.D.

PROPOSITION 11. Let #; = {WE|{W;| W, is cofinite} = WE}. Then F,
is an r.e. family and G(F7) is [ |§ complete.

Proor. The class {W;| W; is cofinite} is, of course, r.e.; say, {W;|W;
is cofinite} = WS. Hence % is an r.e. family, since

Fr = (WIIENIWE = Wi v Wel).
Next, observe that
ne G(#;) < (Yh)[W, is cofinite = (3)[l e W, and (W, = W,)]].

But W, = W, isa 1‘[2 predicate of / and A; and the assertion that W, is
cofinite is ([4]) a Zg predicate of 4. Hence, by the usual prenex operations
(carried out with several alternations of priority between the antecedent
and the consequent inside the main quantifier), we see that n e G() is
a []4 predicate of n. To show []¢ completeness of G(F;), we construct
a recursive function Y4(x, y) with the property that

(VO(YR)[(Yu)Fo)(Yw)(3z2)Tu( f, 1, u, v, w, 2)
< (V)@AEK)[804s,m(L K, ) = N=D,]].

To this end we define a partial recursive function { as follows:

0, if (Yw £ y)(3z < s)Tu(fin, I, k, w, z) and

C},n(la kay): yeN—Dl:
undefined, otherwise;

0
Zf,n =dar U C;”,n'
s=0

L, is partial recursive uniformly in fand #; so let Y¢(x, y) be a recursive
function such that

(NN @gecr,my = Cpnl-

Now, it is easily seen from the definition of { that for each pair </, k)
we have either
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80p(r.m(l ks ) = N=Dy or ¢ypn(l k. y) = a

finite set, according as (Yw)(3z)T4(f,n, L k,w,z) or — (Yw)(3z)T,
(f, m, I, k, w, z). It readily follows that for every pair {f, n) we have

(Vu)3o)(Yw)(32)T4(f, n, u, v, w, z)
g (vj)(al)(ak)[a(pallle(f,n)(l’ k, y) = N—Dj]'

Hence nethe fth [§ set < ((y(¥s(f; 7)) € G(F), and G(F) is
I3 complete. Q.E.D.

PROPOSITION 12. Let F4 = {WE|(3n)[{W;| W, is a relatively cofinite
subset of P,} = WEl}. Then % is an r.e. family and G(F) is Y3 com-
plete.

ProOF. Let j(x, y) be a recursive function with %(n, y) one-to-one for
each number n, such that (VYr)[{P,—Ds,, »lyeN} = {W;|W,; is a
relatively cofinite subset of P,}]. It follows that % is r.e., since

% = {Wecl(af)(an)[WeC = Wj(‘: Y {Pn—Df(n,y)lyEN}]}'

Next, since ne G(F) < (3k)(Yj)@m)[m e W, and P,— Dz, = W,],
and since the predicate Py~ Dy, ;) = W, is a 15 predicate of k,j and
m, we have that G(%) is Y2. In the same way in which we showed
G(Z) to be Y 4 complete by modifying our proof of the [ J3 completeness
of G(%;), we shall now show G(Z%) to be Y2 complete by making
appropriate alterations in our proof of the [] completeness of G(F).
First, we define a partial recursive function y by stipulating that

O, if y € Pl_Di(l,k) al’ld

Vb ks y) = { (Yw < y)(3z < §)Ts(f, n, L k, j, w, z),
undefined, otherwise;

0
Ve =ar U V7on-
s=0

Ys,n» as so defined, is partial recursive uniformly in f and n; hence there
is a recursive function B(x, y) such that (Vf)(Ya)[7s,» = @5s,m]- Let {3
be a recursive function such that (VA)(Vn)[@Z,(s,m(m2(l k), j ) =
qo,‘;'( w6k, j,»)]. Then, for all 5-tuples {f,n, 1l k,j), we have that
807,cr.m(m2(l, k), j, ) = either P,— Dz, or a finite set, according as
(Yw)3z)Ts(f, n, I, k, j, w, z) or not. It follows that, for every pair {f, n)
of numbers, we have

@ANVE)ENW)E)Ts(f n, 1, k, j, w, 2)
g (al)(Vk)(aj)[5¢?3(f,n)(nZ(l’ k)’ja y) = Pl _D'i(l»k)]'
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So, if we set /4 b w(l; {5 then
ne the f-th Y 2 set <> Y, (f, n) € G(F).
Thus G(%) is Y9 complete. Q.E.D.
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