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1. Introduction

Let X = {X(t), t ~ 0} be a standard Markov process with state space
E. Assume that for each x E E, x is regular for itself: i.e., if Tx =
inf{t &#x3E; 0 : X(t) = x}, then Px{Tx = 0} = 1. Then according to the

theory of Blumenthal and Getoor, there is for each x, a continuous,
unique (up to constant multiples), increasing additive functional (Lo,
t ~ 0}, called the local time at x, which increases ’only’ when the process
X is in the state x (see [ 1 ], [2 for precise descriptions.) As such, Lx is
supposed to give some indication of how much time before t the process
X spends in the vicinity of x. In special cases, Lx admits representation
as a limit of quantities that measure in some more direct way the amount
of time spent near x. For example, if Bn is a sequence of neighborhoods
of x with n Bn = x, then it often turns out that

Lxt - lim [03BC(Bn)]-1 t0 IBn[X(s)]ds
(see Griego, [6]) so that Lt is a limit of ’occupation times’ averaged over
smaller and smaller neighborhoods of x. (Here IB is the indicator of B,
Il is Lebesgue measure.) For certain diffusion processes, it is known that
Lt = lime J. o 8 de(t), where d03B5(t) is the number of times the real valued

process crosses down from s &#x3E; 0 to 0 before time t (this result, conjectured
by Lévy [8 ], was proved by Ito and McKean [7]). Finally, Blumenthal
and Getoor ([1], see also [5]) showed that under fairly general circum-
stances, if X has a reference measure 03BE, then an appropriate choice of
the local time Lt could serve as a density for occupation time, in the sense
that for every Borel set B, t0 IB[X(s)]ds = BLxt 03BE(dx) a. s. In this paper,
a new description of L0t, valid for a wide class of real valued Markov
processes, is found which describes L° more or less in terms of ’the number
of times’ the process ’jumps across zero.’

1 Partially supported by the Air Force Office of Scientific Research under AFOSR
Grant AF-AFOSR 67-1261 B.

2 Supported partly by NSF Grant GP-24490 and partly by a NSF postdoctoral
fellowship.
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While the basic theorem of this paper can be formulated for quite
general Markov processes (see section 2), the character of this result is
most easily illustrated by a few special cases. Let X = {X(t), t ~ 0} be
a real valued process with stationary independent increments and Lévy
measure v. Let 1n(t) be the number of jumps j(X, s) = X(s)-X(s-)
before time t for which X(s-)  0  X(s) and 2-n-1  j(X, s)  2-".

So Jn(t) is the ’number of (upward) jumps across 0 having size in
(2-"-1, 2-")’. Assume that v(R) = oo, that 0 is regular for {0}, and that
Li is jointly continuous in (x, t). Then (theorem 3.2) there is a version
1° of the local time at 0 (see section 2 for the precise description) such
that for each T,

provided 03A3[1/Fn] J  oo, where F. = 2-n2-n-1 xv(dx). This result is very
close in spirit to the result of Ito and McKean mentioned above. An
illustration is the case where X is a stable process with index a, 1  a  2,
in which case Jn(t)/2n(03B1-1) converges a.s. to clo uniformly, where c is a
known constant. The basic result of section 2 also yields theorems of
the following type. Let Xbe again a stable process with index a, 1  a  2,
and set Qe(t) = 03A3s~t’|X(s) - X(s-)|, where the prime indicates that
the sum is over all s ~ t for which X(s-)  0  X(s) and

|X(s)-X(s-)|  8. Thus Qe(t) is the sum up to time t of all the upward
jumps across 0 which have magnitude at most 03B5. Then for stable X with
1  a  2 (see theorem 3.1),

for all 03B4 &#x3E; 0, and T &#x3E; 0.

Section 2 contains the statement and proof of the basic result, while
section 3 presents a number of applications to processes with independent
increments. The terminology referring to the theory of Markov processes
will be that of [2].

2. Main result

Let X = {X(t), t ~ 01 be a standard, real valued Markov process.
Let T,, = inf{t &#x3E; 0 : X(t) = x}, and assume from now on that each x
is regular for itself. Define for a &#x3E; 0

According to the theory of Blumentahl and Getoor [2], there is for each
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x a continuous additive functional {Lxt, t ~ 01, the local time at x, satis-
fying

so that in particular Ex f ô e -’dLx = 1. Assume from now on that 03C81(x, y)
is jointly Borel measurable, and that there is a reference measure 03BE for
the process X. If U03B1 is the usual operator UJ(x) = Ex ~0 e-03B1t f[X(t)]dt,
then under the preceding assumptions Getoor and Kesten [5] have prov-
ed the following result which will be stated as a lemma for the convenience
of the reader.

LEMMA 2.1 There is a strictly positive finite Borel function g on R such
that 1,x(co) defined by 1,x(co) = g(x)Lx(co) satisfies a.s.

for all t ~ 0 and Borel sets B simultaneously. Define for each a &#x3E; 0,

Since a reference measure is assumed throughout this section, there
exists, according to the theory of S. Watanabe [13], a Lévy system (N, A)
for the process X. Here N(x, dy) is a non-negative kernel such that for
each x e R, N(x, ·) is a measure on the Borel sets of R and for each Borel
set B, N(·, B) is a Borel function. A = {A(t), t ~ 0} is a finite, continuous
additive functional having the following property: for every non-negative
Borel function f on R x R vanishing on the diagonal

where Nf(x) = f N(x, dy)f (x, y). For simplicity, assume from now on that
A(t) = t. This may always be achieved by a time change if necessary (see,
for example [11 ]); in the case of processes with independent increments
one may always take A(t) = t. as can be verified directly.
For the remainder of this section assume
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The following theorem is the main result of this section.

THEOREM 2.1. Let X = {X(t), t 01 be a standard, real valued Markov
process. Assume that there is a reference measure ç, that each point of
the state space is regular for itself, that 03C81 (x, y) is jointly Borel measurable,
and that the additive functional A of the Lévy system (N, A) satisfies
A(t) = t. For all sufficiently small e or only for a 10 through a sequence,
let f03B5(x, y) be a non-negative Borel function vanishing on the diagonal such
that there exists a compact interval 1(8) = [a( 8), b( 8)] containing 0 and
such that Nfr.(x) = 0 outside 1(8). Assume a(8) -+ 0 and b(8) ~ 0 as
8 ~ 0, and that

satisfies 0  F(e)  oo. Assume (2.9) and (2.10). Finally, define

Then the following conclusions hold.

for each T and each ô &#x3E; 0.

2. If {lxt} is jointly continuous in (t, x) near 0 and if {03B5n, n ~ 1} is a

sequence decreasing to 0 such that 03A3n~ 1G(03B5n)/[F(03B5n)]2  oo, then

for each T.

REMARK. If u1(x, x) is continuous as a function of x, then it follows
from lemma 2.1 that lt will be jointly continuous in (t, x) if and only if
Lxt is jointly continuous. Conditions guaranteeing joint continuity of
Lxt have been given recently by Getoor and Kesten [5].

Before proceeding with the proof, note that, under the assumptions
of theorem 2.1, Lemma 2.1 permits the following conclusion.

LEMMA 2.2. Let h(x) be a non-negative, , finite Borel function. Then
A(t) = t0 h[X(s)]ds and B(t) = lxth(x)03BE(dx) are equivalent stochastic
processes.
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PROOF. It suffices to assume h bounded. Let u03B1A and u03B1B be the a poten-
tials of A and B respectively. Then from (2.4),

and from (2.6)

Since A and B are continuous additive functionals having the same
bounded 1-potentials, the conclusion follows (see [2], p. 157).
The proof of theorem 2.1 has the following structure. In the terminology

of Meyer [10], the process Q03B5(t) is increasing but not natural. By Meyer’s
decomposition theorem for supermartingales, there is a unique natural
increasing process V03B5(t) such that Q£(t)- V£(t) is a martingale. The
limit results on Q,(t) are then deduced by analysing V03B5(t) and the
martingale separately.

PROOF OF THEOREM 2.1. First, observe that from 2.2

so that

and from lemma 2.1

Let V03B5(t) = t0 Nf03B5[X(s)]ds. From lemma 2.2,
and from 

By assumption
bounded for x near 0. Thus for s small, and all y,

for some constant M. Observe that Q03B5(t) is an additive functional and
VE is a continuous additive functional. It then follows from (2.8) that
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is an additive functional with mean zero, and so must be a martingale
relative to each Py.

Define 03BC03B5(dx) = Nf03B5(x)03BE(dx)/F(03B5). By the assumptions of theorem
2.1, 03BC03B5 is a probability measure carried by 1(8), and Me converges weakly
to unit mass at 0. Moreover,

and

If, as in case (2), lt is jointly continuous in (t, x), then for almost all cv,
sup0~t~T|lxt - l0t - 0 as x - 0 by uniform continuity, implying that
sup0~t~T|V03B5(t)/F(03B5)-l0t| ~ 0 a.s. in this case. To treat case 1, recall
that according to a result of Meyer ([9], see also [2], V.3)

where y(x) was defined in (2.9). By virtue of the formula

Since (see lemma 2.1)

it follows from (2.13) and the calculation above that

Hence

By assumptions (2.9), (2.10) the integrands above are continuous at
0 and are equal to 0 there. Since 03BC03B5(dx) converges weakly to unit mass
at 0, this completes the treatment of V03B5(t) in both case 1 and case 2.

Turning next to the martingale ME(t), observe that a fundamental fact
on Lévy systems (S. Watanabe [13], p. 63, eq. 3.11) implies that
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Since M,, is a martingale, this together with the well-known martingale
inequality of Doob ([4], p. 317) yields

Since by hypothesis lim03B5~0G(03B5)/[F(03B5)]2 = 0 in case 1, it follows that

sup0~t~TM03B5(t)/[F(03B5)]2 ~ 0 in probability. In case 2, since

and 03A3G(03B5n)/[F(03B5n)]2  ~, a Borel Cantelli argument shows

This completes the proof of theorem 2.1.

3. Processes with stationary independent increments

Theorem 2.1 yields a number of interesting results when X = {X(t),
t ~ 0} is a process with independent increments. This section contains
several of these applications.
Throughout this section, let X = {X(t), t ~ 0} be a real valued process

with stationary independent increments having right continuous paths
with left limits. Of course, E 0 e’ux(’) = exp { - t~(u)} where

The measure v is called the Lévy measure, and 0 is called the exponent of
X. Assume throughout that 0 is regular for itself; in the present circum-
stances this implies that each x is regular for {x}. Precise conditions under
which 0 is regular for {0} may be found in [3]. Assume also from now
on that v(R) = oo. (If v(R)  oo, then it is obvious that it is impossible
to represent local time (when it exists) as a limit of quantities depending
only on the jumps about 0).



130

Under the last two assumptions, it is known ([3], [12]) that for each
a &#x3E; 0 there exists a real, bounded, continuous function uQ(x) such that
U"f(x) = f(y)u03B1(y-x)dy for all bounded Borel f, and satisfying
u2(x) = u03B1(0)03C803B1(0, x). It follows from this that Lebesgue measure is a
reference measure and, in the notation of section 2, u"(x, y) = u03B1(y - x);
see [5] for more detail on this point. Since there is a reference measure,
a Lévy system (N, A) exists which, in fact is given by N(x, dy) = v(dy-x),
A(t) = t. Actually, for the case of processes with independent increments
one may show directly that this is a Lévy system for X even when there
is no reference measure. It is clear that 03C81(x, y) = 03C81(0, y-x) is jointly
Borel measurable in (x, y) in the present case (yl (0, z) is continuous in z).
Since 03C81(x, y) = u1(y-x)/u1(0), it follows again from the continuity
of u’(-) that limx~003C81(x, 0) = limx~003C81 (0, x) = u1(0)/u1(0) = 1, so

(2.9) holds. Finally, since u1(x, x) = u1(0), (2.10) holds trivially and so
all assumptions of section 2 are satisfied by a real valued process with
stationary independent increments having 0 regular for {0} and v(R) = oo.
For theorem 3.1, let F(E) = F(g, 03B5) = 03B50f 03B5xg(y)v(dy)dx, where g is a

non-negative Borel function on (0, ~), bounded on finite intervals. If
0  ô  e, an integration by parts yields

where K(x) = fxg(y)v(dy) is a function that increases as x decreases.

If 03B4 ~ 0 and 03B50 xg(x)v(dx)  00, then it follows, since all terms above are

positive, that fôK(x)dx  00 and lim03B4~003B4K(03B4) exists. Since

it follows that lim03B4~03B4K(03B4) = 0. Hence, if l’ 0 xg(x)v(dx)  oo, then

00 &#x3E; 03B50f03B5xg(y)v(dy)dx = 0 xg(x)v(dx). Conversely it is not hard to see

that if F(8)  co, then oo &#x3E; l’ 0 xg(x)v(dx) = F(8).
THEOREM 3.1 Assume 0  F(e) = 0 xg(x)v(dx)  oo, and define

G(8) = 03B50J x[g(x)]2v(dx). Let Q£(t) = 03A3’s~tg(|j(X, s)l) where the prime
means that the sum is over only those jumps j(X, s) = X(s) - X(s-) for
which X(s-)  0  X(s) and |j(X, s)1  8. Then:

(a) If lim03B5~ 0 G(03B5)/[F(03B5)]2 = 0, then

for every T &#x3E; 0 and ô &#x3E; 0.

(b) If lt is jointly continuous in (t, x) and if {03B5n, n ~ 11 is a positive
sequence converging to zero such that 03A3G(03B5n)/[F(03B5n)]2  00, then
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Conditions guaranteeing joint continuity of lt can be found in [5]. A
large number of functions g satisfy the hypothesis that F(8)  oo; in

particular g(x) = |x| always works, since |x| 1|x|2v(dx)  oo for any

Lévy measure v. As a special case, suppose X is a stable process with
index a, 1  a  2. Then the exponent is of the form

where c1 ~ 0, c2 ~ 0, c1 +C2 &#x3E; 0. Suppose c1 &#x3E; 0 for convenience.

If g(x) = |x|, then F(8) = c03B52-03B1, where c = c1(2-03B1)-1, and

Then, as mentioned in the introduction, lim03B5~0Q03B5(t)/03B52-03B1 = cl0t in
probability, uniformly on compact intervals and

uniformly on compact intervals. (That lt is jointly continuous in the
stable case is well-known - see [2] and the references there.) As another
example, the asymmetric Cauchy processes are interesting to consider.
Here the exponent 0 is of the form (3.1) with a = 1 and Cl :0 c2 .
Assume c1 &#x3E; 0 (if not, then one can establish the result below for - X
instead.) It was proved by Kesten and Getoor that no jointly continuous
version of the local time exists for the asymmetric Cauchy processes
([5], example b, section 4). Choose g of theorem 3.1 to be

Then for sufficiently small 8,

and

Thus

limit theorem continues to hold even in this singular case.
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PROOF OF THEOREM

In the notation of theorem 2.1,

Also,

Similarly

The result now follows from theorem 2.1.

Next, consider the following choice of

is equal to the number of jumps j (X, s) = X(s) - X(s-) across 0 up to
time t for which 03B503BB(03B5)  j(X, s)  s. Here

Then

since le = f203B5, Nf203B5 = Nf03B5 = F(8) in this case. An application of
theorem 2.1 to the preceding calculations then yields the following result.

THEOREM 3.2. Let A be a function such that 0  03BB(03B5)  1 for all 8 and
define F(8) = F(03BB, 8) = 03B503B503BB(03B5) xv(dx). Let J03B5(t) be the number of jumps
up to time t for which X (s-)  0  X(s) and 8A(8)  X(s)-X(s-)  03B5.



133

(b) If lt is jointly continuous in (x, t) and if gn is a positive sequence
converging to zero such that 03A3n~ 1 [1/F(03B5n)]  oo then

Let X be a stable process with index a, 1  a  2, and exponent (3.1 )
with cl &#x3E; 0, and let Jn(t) be the number of upward jumps across 0 up
to time t having size (2-n-1, 2-n). According to theorem 3.2b,

where c = c1(203B1-1-1)/(03B1-1), as mentioned in the introduction. (Take
8n = 2-n and 03BB(2-n) = (1 2) for all n.) If X is an asymmetric Cauchy
process, F(s) = c1 03B503B503BB(03B5) x-1 dx = - c1 log 03BB(03B5). If 03BB(03B5) - 0 as s ~ 0,
then lim03B5~0 F(03B5) = +00. Hence from theorem 3.2a,

in probability. Again a limit theorem continues to hold in the singular
Cauchy case.
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