COMPOSITIO MATHEMATICA

R.H.MARTY

$\kappa - R$ -spaces

Compositio Mathematica, tome 25, nº 2 (1972), p. 149-152 <http://www.numdam.org/item?id=CM_1972_25_2_149_0>

© Foundation Compositio Mathematica, 1972, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

κ —*R***-SPACES**¹ by

R. H. Marty

Let R be a nonempty topological class of topological spaces. A space X is said to be locally in R provided every element of X has a neighborhood whose closure is in R. R/X denotes the class of closed subspaces of X that belong to R. A space X is called an R-space provided that for every $F \subset X$, if $A \cap F$ is closed for every $A \in R/X$, then F is closed. This concept, introduced in [2] and [3], generalizes such concepts as k-spaces, spaces determined by sequences (sequential spaces), spaces determined by wellordered sets (see [3]), etc.

It turns out however that various classes of spaces have properties similar to the above mentioned, but which cannot be defined in terms of *R*-spaces. For instance, it has been shown in [4] that every *m*-adic space Xhas the following property:

(p) For every Q-open subset A of X, if $A \cap C$ is closed for every compact countable subset C of X, then A is closed. (A set is Q-open provided that it is a union of G_{δ} -sets.)

REMARK. Property (p) is equivalent to the statement that every sequentially closed Q-open subset of X is closed.

The purpose of this paper is to introduce a further generalization of R-spaces which in particular will enable one to handle property (p).

1.

Let κ be a map which assigns to each space X a nonempty class $\kappa(X)$ of subsets of X. We say that a space X is a $\kappa - R$ -space if and only if for every $G \in \kappa(X)$, if $G \cap A$ is closed for every $A \in R/X$, then G is closed. It is clear that every space X is a $\kappa - R$ -space if $\kappa(X)$ contains only closed subsets of X. Henceforth we shall assume that $\kappa(F) = \{G \cap F : G \in \kappa(X)\}$ for every closed subspace F of X and that $\varphi^{-1}[G] \in \kappa(X)$ for every $G \in \kappa(Y)$ where φ is a continuous map of X onto a space Y. All spaces will be assumed Hausdorff.

¹ A portion of this paper is a part of the author's doctoral dissertation directed by Professor S. Mrowka and submitted to The Pennsylvania State University in December 1969.

1.1. The property of being a $\kappa - R$ -space is local (i.e., if every element of X has a neighborhood whose closure is a $\kappa - R$ -space, then X is a $\kappa - R$ -space).

PROOF. Suppose that $G \in \kappa(X)$ and G is not closed. Let $x \in \overline{G} \setminus G$. There is a neighborhood U of x such that \overline{U} is a $\kappa - R$ -space. But $\overline{U} \cap G$ is not closed in \overline{U} and $\overline{U} \cap G \in \kappa(\overline{U})$. Thus there is an $A \in R/\overline{U}$ such that $A \cap \overline{U} \cap G$ is not closed in \overline{U} . Clearly, $A \in R/X$ and $G \cap A$ is not closed in X. Thus X is a $\kappa - R$ -space.

1.2. COROLLARY. Every space which is locally in R is a κ – R-space.

1.3. COROLLARY. A discrete union of κ – R-spaces is a κ – R-space.

PROOF. This follows since a discrete union of $\kappa - R$ -spaces is locally a $\kappa - R$ -space.

1.4. If every member of R' is a $\kappa - R$ -space, then every $\kappa - R'$ -space is a $\kappa - R$ -space.

PROOF. Suppose that X is a $\kappa - R'$ -space, $G \in \kappa(X)$, and $G \cap A$ is closed for every $A \in R/X$. To show that G is closed it suffices to show that $G \cap B$ is closed for every $B \in R'/X$.

Let $B \in R'/X$ be arbitrary. Then B is a $\kappa - R$ -space by our hypothesis. Since $G \cap A$ is closed for every $A \in R/X$ and B is closed in X, $G \cap B \cap A$ is closed in B for every $A \in R/B$. But $G \cap B \in \kappa(B)$ and B is a $\kappa - R$ -space; therefore, $G \cap B$ is closed in B. Clearly, $G \cap B$ is closed in X. Thus X is a $\kappa - R$ -space.

A map φ of a space X onto a space Y is called κ -quotient provided that φ is continuous and B is closed in Y for every $B \in \kappa(Y)$ for which $\varphi^{-1}[B]$ is closed in X. The map φ is called $\kappa - R$ -quotient provided that φ is κ -quotient and $\varphi[A] \in R/Y$ for every $A \in R/X$.

1.5. The image of a $\kappa - R$ -space under a $\kappa - R$ -quotient map is a $\kappa - R$ -space.

PROOF. Suppose that φ is a $\kappa - R$ -quotient map of a $\kappa - R$ -space X onto a space Y. Let $G \in \kappa(Y)$ and suppose that $G \cap A$ is closed in Y for every $A \in R/Y$. By our hypothesis, $\varphi^{-1}[G] \in \kappa(X)$. Let $B \in R/X$. Then $\varphi[B] \in$ R/Y; consequently, $\varphi[B] \cap G$ is closed in Y. But $B \cap \varphi^{-1}[G] = B \cap$ $\varphi^{-1}[\varphi[B] \cap G]$. Thus $B \cap \varphi^{-1}[G]$ is closed in X. Since X is a $\kappa - R$ space, $\varphi^{-1}[G]$ is closed. Finally, φ being a κ -quotient map implies that G is closed in Y. Thus Y is a $\kappa - R$ -space.

1.6. COROLLARY. If R consists of compact spaces and R is closed under continuous maps, then the property of being a κ -R-space is closed under κ -quotient maps.

$\kappa - R$ -spaces

PROOF. This follows since under these hypotheses, every κ -quotient map must be $\kappa - R$ -quotient.

1.7. Let X be a κ -R-space and let K be a subclass of R/X such that every member of R/X is contained in some member of K and $\bigcup K = X$. Then X is a κ -quotient of the discrete union of members of K.

PROOF. Let Y denote the discrete union of K. For convenience we consider the elements of Y to be the elements of X. Let φ map Y onto X so that the image of a point in Y is that same point in X. It follows that φ is continuous since its restriction to each space in the union is continuous.

Now let $B \in \kappa(X)$ such that $\varphi^{-1}[B]$ is closed in Y. If B is not closed in X, then there is an $A \in R/X$ such that $B \cap A$ is not closed in X. By our hypothesis, there is an $X' \in K$ such that $A \subset X'$. Thus $B \cap A$ is not closed in X'; consequently, there is an $x \in (\overline{B \cap A} \setminus (B \cap A)) \cap X'$. However, $x \in \varphi^{-1}(x) \cap X' \subset (\varphi^{-1}[\overline{B}] \cap \varphi^{-1}[A]) \cap X'$ and $x \notin (\varphi^{-1}[B] \cap \varphi^{-1}[A]) \cap X'$. Since $\varphi^{-1}[B]$ is assumed closed and $B \cap X' \subset \varphi^{-1}[B] \cap X'$, it follows that $x \notin \overline{B}$. This is a contradiction. Thus φ is κ -quotient.

1.8. THEOREM. Let every $A \in R$ be compact and every continuous image of A be a κ -R-space. Then the following are equivalent:

- a) X is a κ -R-space;
- b) X is a κ -quotient of a discrete union of some members of R;
- c) X is a κ -quotient of a space which is locally in R.

PROOF. To show that a) implies b) we let $R' = R \cup \{$ one-point spaces $\}$. Clearly, X is a $\kappa - R'$ -space. By 1.7, X is a κ -quotient of the discrete union of R'/X; however, every one-point space is a quotient of a space in R. Thus b) follows.

The proof that b) implies c) is clear since a discrete union of members of R is locally in R.

Finally, c) implies a). Suppose that Y is a space which is locally in R (and hence a $\kappa - R$ -space) and that φ is a κ -quotient map of Y onto X. Let R^* be the class of all continuous images of members of R. Then Y is a $\kappa - R^*$ -space. Thus by 1.6, X is a $\kappa - R^*$ -space. And by 1.4, X is a $\kappa - R$ -space.

Let R denote the class of spaces homeomorphic to N^* (the one-point compactification of an infinite countable discrete space) and let $\kappa(X)$ denote the class of Q-open subsets of the space X. Then a space X is a $\kappa - R$ -space if and only if every sequentially closed Q-open subset of X is closed. Furthermore, Theorem 1.8 gives a characterization of such spaces.

This section contains special results which do not fit into the above. Let κ be a map as in the first section. We say that a space X has property (q) provided that every sequentially closed set belonging to $\kappa(X)$ is closed. This property is a generalization of such properties as (p) and that of a space being sequential. (For the latter property take $\kappa(X)$ to be all subsets of X.)

The following two results are generalizations of results in [1] which refer to sequential spaces. The proofs are straightforward modifications of those in [1].

2.1. Let X have property (q) and $Y \subset X$. Then Y has property (q) if and only if $\varphi | \varphi^{-1}[Y]$ is κ -quotient where φ is a κ -quotient map of the discrete union of the convergent sequences in X onto X.

2.3. The product of two spaces X and Y having property (q) has property (q) if and only if $\varphi \times \varphi_1$ is κ -quotient where φ and φ_1 are κ -quotient maps of the discrete unions of the convergent sequences in X and Y onto X and Y respectively.

REFERENCES

S. P. FRANKLIN

- [1] Spaces in which sequences suffice II, Fund. Math. 61 (1967), 51-56.
- [2] Natural covers, Compositio Math. 21 (1969), 253-261.

S. MROWKA

- [3] R-spaces, Acta Math. Acad. Sci. Hungar. 21 (1970), 261-266.
- [4] Mazur Theorem and m-adic spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 299–305.

(Oblatum 14-I-1972)

The Cleveland State University Euclid Avenue at 24 Street Cleveland, Ohio 44115 U.S.A.