COMPOSITIO MATHEMATICA

H. G. MEIJER H. NIEDERREITER On a distribution problem in finite sets

Compositio Mathematica, tome 25, nº 2 (1972), p. 153-160 <http://www.numdam.org/item?id=CM 1972 25 2 153 0>

© Foundation Compositio Mathematica, 1972, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON A DISTRIBUTION PROBLEM IN FINITE SETS

by

H. G. Meijer and H. Niederreiter

1.

In [2] the following problem emerged which deserves some interest of its own. Let $X = \{x_1, \dots, x_k\}$ be a nonvoid finite set and let μ be a measure on X with $\mu(x_i) = \lambda_i > 0$ for $1 \le i \le k$ and $\sum_{i=1}^k \lambda_i = 1$.

Without loss of generality we may suppose that the x_i are arranged in such a way that $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k$. For an infinite sequence ω in X, let $A(i; N; \omega)$ denote the number of occurrences of the element x_i among the first N terms of ω and let $D(\omega) = \sup_{i,N} |A(i; N; \omega) - \lambda_i N|$ (the supremum is taken over $i = 1, 2, \cdots, k; N = 1, 2, \cdots$). We pose the problem: how small can $D(\omega)$ be?

Similarly, define $A(M; N; \omega)$ for a subset M of X to be the number of occurrences of elements from M among the first N terms of ω and put $C(\omega) = \sup_{M,N} |A(M; N; \omega) - \mu(M)N|$ (the supremum is taken over all subsets $M \subset X$ and $N = 1, 2, \cdots$). Then we may ask: how small can $C(\omega)$ be?

These problems are similar to the well-known problem of constructing a sequence with small discrepancy in the unit interval [0,1] (see e.g. v.d. Corput [1]).

It was shown in [2] that a 'very well' distributed sequence ω in X can be found with

$$D(\omega) \leq k-1, \qquad C(\omega) \leq (k-1)\left[\frac{k}{2}\right].$$

Those values, however, are far from being optimal. In section 2 of this paper we shall construct a sequence ω in X with

(1)
$$D(\omega) \leq \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{k-2} \frac{1}{n}$$
 and $C(\omega) \leq \frac{1}{2}(k-1)$ for $k \geq 2$.

If k = 1 then, trivially, $C(\omega) = D(\omega) = 0$.

For some special measures μ on X better results can be obtained. If e.g. $\lambda_1 = \cdots = \lambda_k = 1/k$ then one easily verifies that the sequence $\omega = (y_n)_{n=1}^{\infty}$ defined by $y_n = x_i$ if $n \equiv i \pmod{k}$ satisfies $D(\omega) = 1 - 1/k$.

[2]

In section 3 we construct a sequence η in X which gives a better result than (1) if λ_k is sufficiently small and $k \ge 3$. In fact we prove

$$D(\eta) \leq \begin{cases} \frac{1}{2} + \frac{1}{2}\lambda_k \ (k-2) \ \text{if } k \ \text{is even} \\ \frac{1}{2} + \frac{1}{2}\lambda_k \ (k-1) \ \text{if } k \ \text{is odd} \end{cases}$$
$$C(\eta) \begin{cases} = D(\eta) & \text{for } k = 2, 3 \\ \leq \max \ (D(\eta), \frac{5}{4}) & \text{for } k = 4 \\ \leq \max \ (D(\eta), \frac{25}{16}) & \text{for } k = 5 \\ \leq \max \ (D(\eta), \frac{1}{2}(k-2)) & \text{for } k \ge 6. \end{cases}$$

We remark that always $\lambda_k \geq 1/k$.

Added in proof: Recently Tijdeman [3] found by an entirely different method: if $D_k = \sup_{\mu} \inf_{\omega} D(\omega)$, then it holds

$$1-\frac{1}{2(k-1)} \leq D_k \leq 1.$$

Moreover he generalized the results to countable sets.

A refinement of this method gives

$$D_k = 1 - \frac{1}{2(k-1)}$$

(see [4]).

2.

By using some refinements of the method employed in [2], we can prove the following result.

THEOREM 1. For any nonvoid finite set $X = \{x_1, \dots, x_k\}$ and every measure μ on X with $\mu(x_i) = \lambda_i > 0$ $(i = 1, \dots, k), \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_k$ and $\sum_{i=1}^k \lambda_i = 1$, there is a sequence ω in X such that

(2)

$$|A(i; N; \omega) - \lambda_i N| \leq \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{k-i} \frac{1}{n} \quad \text{if} \quad 2 \leq i \leq k$$

$$|A(1; N; \omega) - \lambda_1 N| \leq \frac{1}{2} \sum_{n=1}^{k-1} \frac{1}{n},$$

therefore

$$D(\omega) = 0 \quad \text{if } k = 1,$$

$$D(\omega) \leq \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{k-2} \frac{1}{n} \quad \text{if } k \geq 2;$$

moreover

$$C(\omega) \leq \frac{1}{2}(k-1).$$

PROOF. We proceed by induction on k. Obviously the case k = 1 is trivial. Assuming the proposition to be true for an integer $k \ge 1$, we shall prove that it also holds for k+1.

We consider the set $X = \{x_1, \dots, x_{k+1}\}$ and a measure μ on X with

$$\mu(x_i) = \lambda_i > 0, \qquad \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{k+1}, \sum_{i=1}^{k+1} \lambda_i = 1$$

On the subset $Y = \{x_1, \dots, x_k\}$ of X, introduce a measure v by

$$v(x_i) = \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_k} = \alpha_i.$$

Since $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k$ it follows that

(3)
$$\alpha_i \leq \frac{1}{k-i+1} \text{ for } 1 \leq i \leq k.$$

By induction hypothesis, there exists a sequence $\tau = (y_n)_{n=1}^{\infty}$ in Y with

(4)

$$|A(i; N; \tau) - \alpha_i N| \leq \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{k-i} \frac{1}{n} \quad \text{if } 2 \leq i \leq k,$$

$$|A(1; N; \tau) - \alpha_1 N| \leq \frac{1}{2} \sum_{n=1}^{k-1} \frac{1}{n}$$

for all $N \ge 1$, and with

$$(5) C(\tau) \leq \frac{1}{2}(k-1).$$

We introduce the following notation: for a real number a let $||a|| = [a+\frac{1}{2}]$, i.e. the integer nearest to a. For $n \ge 1$, put $R(n) = n - ||\lambda_{k+1}n||$. We define a sequence $\omega = (z_n)_{n=1}^{\infty}$ in X by setting

$$z_n = x_{k+1} \quad \text{if} \quad ||\lambda_{k+1}n|| > ||\lambda_{k+1}(n-1)||, \\ z_n = y_{R(n)} \quad \text{if} \quad ||\lambda_{k+1}n|| = ||\lambda_{k+1}(n-1)||. \quad (n = 1, 2, \cdots)$$

We get then

$$A(k+1; N; \omega) = ||\lambda_{k+1}N|| = \lambda_{k+1}N + \varepsilon$$

with $|\varepsilon| \leq \frac{1}{2}$, and therefore

(6)
$$|A(k+1; N; \omega) - \lambda_{k+1}N| \leq \frac{1}{2}.$$

For $1 \leq i \leq k$, we have $A(i; N; \omega) = A(i; R(N); \tau)$ for all $N \geq 1$ (if R(N) = 0, we had to read $A(i; R(N); \tau) = 0$). Now we write

(7)
$$|A(i; N; \omega) - \lambda_i N| \leq |A(i; R(N); \tau) - \alpha_i R(N)| + |\alpha_i R(N) - \lambda_i N|.$$

Using the definitions of R(N) of α_i and (3), we obtain

(8)
$$|\alpha_i R(N) - \lambda_i N| = |\alpha_i (N - \lambda_{k+1} N - \varepsilon) - \lambda_i N| = |\alpha_i \varepsilon| \leq \frac{1}{2(k-i+1)}$$

Hence by (7), (4) and (8) we get

$$|A(i; N; \omega) - \lambda_i N| \leq \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{k-i+1} \frac{1}{n} \quad \text{if } 2 \leq i \leq k,$$

$$|A(1; N; \omega) - \lambda_1 N| \leq \frac{1}{2} \sum_{n=1}^{k} \frac{1}{n}.$$

Moreover (6) implies that the first inequality also holds for i = k+1. Therefore the relations (2) have been proved for k+1.

Furthermore we have to show that ω satisfies $C(\omega) \leq k/2$. If M is a subset of X and M^c denotes its complement in X, then

(9)
$$|A(M^c; N; \omega) - \mu(M^c)N| = |A(M; N; \omega) - \mu(M)N|.$$

Consequently, it suffices to consider subsets M of Y. Using (5) and the same type of arguments as above, we arrive at

$$|A(M; N; \omega) - \mu(M)N| \leq |A(M; R(N); \tau) - \nu(M)R(N)| + |\nu(M)R(N) - \mu(M)N| \leq \frac{1}{2}(k-1) + |\nu(M)\varepsilon| \leq \frac{1}{2}k.$$

3.

In this section we exhibit another construction principle which gives better results than the sequence of section 2 if $\lambda_k = \max \lambda_i$ is small and $k \ge 3$. Since the case k = 1 is trivial we restrict ourselves to $k \ge 2$. For a real number *a* we denote as above $||a|| = [a+\frac{1}{2}]$; moreover we define

(10)
$$\{\{a\}\} = a - ||a||.$$

Hence

(11)
$$-\frac{1}{2} \leq \{\{a\}\} < \frac{1}{2}$$

We consider the following scheme consisting of an infinite number of rows and k columns.

	$\frac{x_k}{\lambda_k}$	•••	$\begin{array}{c} x_2 \\ \lambda_2 \end{array}$	$x_1 \\ \lambda_1$
1 st row	$ \lambda_k $		λ2	λ 1
2nd row	$ 2\lambda_k $		$ 2\lambda_2 $	$ 2\lambda_1 $
n th row	$ n\lambda_k $	•••	$ n\lambda_2 $	$ n\lambda_1 $

The *i*th column consists of $||\lambda_i|| \le ||2\lambda_i|| \le \cdots \le ||n\lambda_i|| \le \cdots$, where $||(n+1)\lambda_i|| = ||n\lambda_i||$ or $||(n+1)\lambda_i|| = ||n\lambda_i|| + 1$. Now we change this column in the following way.

If $||(n+1)\lambda_i|| = ||n\lambda_i||$ $(n = 0, 1, 2, \cdots)$ we omit $||(n+1)\lambda_i||$ such that we get a void place in the scheme.

If on the other hand $||(n+1)\lambda_i|| = ||n\lambda_i||+1$ $(n = 0, 1, 2, \cdots)$ we replace $||(n+1)\lambda_i||$ by x_i . We remark that in the last case

(12)
$$\{\{n\lambda_i\}\} \ge \frac{1}{2} - \lambda_i,$$

(13)
$$\{\{(n+1)\lambda_i\}\} < -\frac{1}{2} + \lambda_i.$$

The *i*th column now consists of places with x_i and void places. Up till the *n*th row there are exactly $||n\lambda_i||$ places with x_i . We do so for i = 1, 2, \cdots , k. The sequence $\eta = (\eta_n)_{n=1}^{\infty}$ is the sequence which we get if we read the consecutive rows from the left to the right. After we have passed through the *n*th row we have had $||n\lambda_i||$ times the element x_i and altogether $T(n) = \sum_{i=1}^{k} ||n\lambda_i||$ elements of η . For this sequence η we will prove the following result.

THEOREM 2. For the sequence η we have

(14)
$$|A(i; N; \eta) - \lambda_i N| \leq \frac{1}{2} + \frac{1}{2}\lambda_i(k-d),$$

where d = 1 if k is odd and d = 2 if k is even. Therefore

$$D(\eta) \leq \frac{1}{2} + \frac{1}{2}\lambda_k(k-d).$$

Moreover

$$C(\eta) \begin{cases} = D(\eta) & \text{for } k = 2, 3 \\ \leq \max(D(\eta), \frac{5}{4}) & \text{for } k = 4 \\ \leq \max(D(\eta), \frac{25}{16}) & \text{for } k = 5 \\ \leq \max(D(\eta), (k-2)/2) & \text{for } k \ge 6. \end{cases}$$

PROOF. Since there is no risk of ambiguity we omit the η in $A(i; N; \eta)$ and $A(M, N; \eta)$.

First we remark that by (10)

$$\sum_{h=1}^{k} \{\{n\lambda_h\}\} = n - \sum_{h=1}^{k} ||n\lambda_h||,$$

which implies that $\Sigma\{\{n\lambda_h\}\}$ has to be an integer. If we exclude the case k even, $(\{\{n\lambda_1\}\}, \dots, \{\{n\lambda_k\}\}) = (-\frac{1}{2}, \dots, -\frac{1}{2})$ we may conclude from (11)

(15)
$$|\sum_{h=1}^{k} \{\{n\lambda_h\}\}| \leq \frac{1}{2}(k-d),$$

where d = 1 if k is odd, d = 2 if k is even. Using again (10) we get

(16)
$$A(i; T(n)) - \lambda_i T(n) = ||n\lambda_i|| - \lambda_i \sum_{h=1}^k ||n\lambda_h||$$
$$= -\{\{n\lambda_i\}\} + \lambda_i \sum_{h=1}^k \{\{n\lambda_h\}\}.$$

Let N be an integer with $T(n) \leq N \leq T(n+1)$. Then A(i; N) = A(i; T(n))or A(i; N) = A(i; T(n)) + 1. In the first case we have by (16), (11) and (15)

$$A(i; N) - \lambda_i N \leq A(i; T(n)) - \lambda_i T(n) = -\{\{n\lambda_i\}\} + \lambda_i \sum_{h=1}^k \{\{n\lambda_h\}\}$$
$$\leq \frac{1}{2} + \frac{1}{2}\lambda_i (k-d).$$

In the second case x_i is an element of the $(n+1)^{\text{th}}$ row. Then by (12)

(17)
$$\{\{n\lambda_i\}\} \geq \frac{1}{2} - \lambda_i.$$

Moreover $N \ge T(n)+1$. Therefore using (16), (17) and (15) we arrive at

$$A(i; N) - \lambda_i N \leq A(i; T(n)) - \lambda_i T(n) + 1 - \lambda_i$$

= $-\{\{n\lambda_i\}\} + \lambda_i \sum_{h=1}^k \{\{n\lambda_h\}\} + 1 - \lambda_i \leq -\frac{1}{2} + \lambda_i + \frac{1}{2}\lambda_i(k-d) + 1 - \lambda_i$
= $\frac{1}{2} + \frac{1}{2}\lambda_i(k-d)$.

This upper bound trivially holds as well with d = 2 in the exceptional case excluded above.

In order to get a lower bound we proceed in a similar way. We have A(i; N) = A(i; T(n+1)) or A(i; N) = A(i; T(n+1)) - 1.

For the calculations we first exclude the case k even,

$$(\{\{(n+1)\lambda_1\}\}, \cdots, \{\{(n+1)\lambda_k\}\}) = (-\frac{1}{2}, \cdots, -\frac{1}{2}).$$

Then we obtain in the first case

$$A(i; N) - \lambda_i N \ge A(i; T(n+1)) - \lambda_i T(n+1)$$

= -{{((n+1)\lambda_i}} + \lambda_i \sum_{h=1}^k {{((n+1)\lambda_h)}} \ge -\frac{1}{2} - \frac{1}{2}\lambda_i (k-d).

In the second case we have $N \leq T(n+1)-1$. Moreover x_i occurs in the (n+1)th row and (13) gives

$$\{\{(n+1)\lambda_i\}\} < -\frac{1}{2} + \lambda_i.$$

Therefore

$$A(i; N) - \lambda_i N \ge A(i; T(n+1)) - \lambda_i T(n+1) - 1 + \lambda_i$$

= $-\{\{(n+1)\lambda_i\}\} + \lambda_i \sum_{h=1}^k \{\{(n+1)\lambda_h\}\} - 1 + \lambda_i$
 $\ge \frac{1}{2} - \lambda_i - \frac{1}{2}\lambda_i(k-d) - 1 + \lambda_i = -\frac{1}{2} - \frac{1}{2}\lambda_i(k-d)$.

One easily verifies that these lower bounds also hold with d = 2 for the case k even,

$$(\{\{(n+1)\lambda_1\}\}, \cdots, \{\{(n+1)\lambda_k\}\}) = (-\frac{1}{2}, \cdots, -\frac{1}{2}).$$

Hence (14) has been proved.

In order to get an estimate for $C(\eta)$ we consider a nonvoid subset M of X. Put

$$M = \{x_{i_1}, \cdots, x_{i_j}\}, \quad \mu M = \lambda_{i_1} + \cdots + \lambda_{i_j} = \Lambda,$$
$$X \setminus M = \{x_{i_{j+1}}, \cdots, x_{i_k}\}.$$

Then

$$A(M; T(n)) - \Lambda T(n) = \sum_{\nu=1}^{j} ||n\lambda_{i_{\nu}}|| - \Lambda \sum_{h=1}^{k} ||n\lambda_{h}||$$

= $-\sum_{\nu=1}^{j} \{\{n\lambda_{i_{\nu}}\}\} + \Lambda \sum_{h=1}^{k} \{\{n\lambda_{h}\}\}$
= $-(1 - \Lambda) \sum_{\nu=1}^{j} \{\{n\lambda_{i_{\nu}}\}\} + \Lambda \sum_{\nu=j+1}^{k} \{\{n\lambda_{i_{\nu}}\}\}.$

Let N be an integer with $T(n) \leq N \leq T(n+1)$ and suppose

$$A(M; N) = A(M; T(n)) + t \text{ with } 0 \leq t \leq j.$$

Then $N \ge T(n) + t$ and

$$A(M; N) - \Lambda N \leq A(M; T(n)) - \Lambda T(N) + t - \Lambda t$$

= $-(1 - \Lambda) \sum_{\nu=1}^{j} \{\{n\lambda_{i_{\nu}}\}\} + \Lambda \sum_{\nu=j+1}^{k} \{\{n\lambda_{i_{\nu}}\}\} + t - \Lambda t.$

Suppose that x_{u_1}, \dots, x_{u_t} are the elements of the $(n+1)^{\text{th}}$ row which are counted in A(M; N) and not in A(M; T(n)).

Then by (12)

$$\{\{n\lambda_{u_{\tau}}\}\} \geq \frac{1}{2} - \lambda_{u_{\tau}}. \qquad (\tau = 1, \cdots, t)$$

Therefore

$$\sum_{\nu=1}^{J} \{\{n\lambda_{i_{\nu}}\}\} \geq \frac{1}{2}t - (\lambda_{u_{1}} + \cdots + \lambda_{u_{t}}) - \frac{1}{2}(j-t) \geq t - \frac{1}{2}j - \Lambda.$$

Hence

$$A(M; N) - \Lambda N \leq -(1 - \Lambda)(t - \frac{1}{2}j - \Lambda) + \frac{1}{2}\Lambda(k - j) + t - \Lambda t$$
$$= \frac{j}{2} + \Lambda \left(\frac{k}{2} - j + 1\right) - \Lambda^2.$$

In a similar way we find a lower bound for $A(M; N) - \Lambda N$ which has the same absolute value.

Hence

$$|A(M; N) - \Lambda N| \leq \frac{j}{2} + \Lambda \left(\frac{k}{2} - j + 1\right) - \Lambda^2.$$

Since for k = 2, trivially, $C(\eta) = D(\eta)$, we suppose $k \ge 3$. We observe

that we can restrict ourselves to $\frac{1}{2}k \leq j \leq k-1$ (compare (9)). If j = k-1, the complement of M is a singleton which was dealt with in $D(\eta)$. In particular this implies $C(\eta) = D(\eta)$ for k = 3. If $\frac{1}{2}k+1 \leq j \leq k-2$, then clearly

$$\frac{j}{2} + \Lambda\left(\frac{k}{2} - j + 1\right) - \Lambda^2 \leq \frac{1}{2}(k-2).$$

If $\frac{1}{2}k \leq j \leq \frac{1}{2}k + \frac{1}{2}$, then

$$\frac{j}{2} + \Lambda\left(\frac{k}{2} - j + 1\right) - \Lambda^2 \leq \frac{1}{2}\left(\frac{k}{2} + \frac{1}{2}\right) + \Lambda - \Lambda^2 \leq \frac{k}{4} + \frac{1}{2}.$$

For $k \ge 6$, we have $\frac{1}{4}k + \frac{1}{2} \le (k-2)/2$ and so $C(\eta) \le \max(D(\eta), (k-2)/2)$. For k = 4, 5 one finds by separate discussion of the permissible values for $j: C(\eta) \le \max(D(\eta), \frac{5}{4})$ for $k = 4, C(\eta) \le \max(D(\eta), \frac{25}{16})$ for k = 5. This completes the proof.

REFERENCES

- J. G. v. d. Corput
- Verteilungsfunktionen II, Nederl. Akad. Wetensch. Proc. Ser. A. 38 (1935), 1058–1066.
- H. NIEDERREITER
- [2] On the existence of uniformly distributed sequences in compact spaces, submitted for publication.
- **R.** Tijdeman
- [3] On a distribution problem in finite and countable sets, submitted for publication.
- H. G. Meijer
 - [4] On a distribution problem in finite sets, to appear.
- H. NIEDERREITER
 - [5] A distribution problem in finite sets, Proc. Symp. on Applications of Number Theory to Numerical Analysis (Montréal, 1971) Academic Press, New York, to appear.

(Oblatum 28-VI-1971 and 7-X-1971)

University of Technology Department of Mathematics Delft, Netherlands and Southern Illinois University Department of Mathematics Carbondale, Illinois 62901