@article{CM_1973__27_1_1_0, author = {Farrell, F. T. and Taylor, L. R. and Wagoner, J. B.}, title = {The whitehead theorem in the proper category}, journal = {Compositio Mathematica}, pages = {1--23}, publisher = {Noordhoff International Publishing}, volume = {27}, number = {1}, year = {1973}, mrnumber = {334226}, zbl = {0285.55011}, language = {en}, url = {http://archive.numdam.org/item/CM_1973__27_1_1_0/} }
TY - JOUR AU - Farrell, F. T. AU - Taylor, L. R. AU - Wagoner, J. B. TI - The whitehead theorem in the proper category JO - Compositio Mathematica PY - 1973 SP - 1 EP - 23 VL - 27 IS - 1 PB - Noordhoff International Publishing UR - http://archive.numdam.org/item/CM_1973__27_1_1_0/ LA - en ID - CM_1973__27_1_1_0 ER -
Farrell, F. T.; Taylor, L. R.; Wagoner, J. B. The whitehead theorem in the proper category. Compositio Mathematica, Tome 27 (1973) no. 1, pp. 1-23. http://archive.numdam.org/item/CM_1973__27_1_1_0/
An algebraic criterion for a map to be a proper homotopy equivalence, Notices A. M. S., Nov. 1969.
and [1]An introduction to homotopy theory, Cambridge University Press, Cambridge Tracts in Mathematics and Mathematical Physics. No. 43. | MR | Zbl
[2]Homotopic and topological invariance of certain rational classes of Pontryagin, Doklady 1965, Tom 162, No. 6. | MR | Zbl
[3]Thesis, Princeton University (1965).
[4]Infinite simple homotopy types, Indag. Nath. 32, No. 5, 1970. | MR | Zbl
[5]Algebraic Topology, McGraw-Hill (1966). | MR | Zbl
[6]Surgery on paracompact manifolds, thesis, University of California at Berkeley, 1971.
[7]Combinatorial Homotopy I and II, Bull. Amer. Math. Soc. 55, 3 and 5 (1949). | MR | Zbl
[8]