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The ex-homotopy category has been investigated in recent years by
I. M. James, J. Becker, L. Smith, J. F. McClendon, C. A. Robinson
and others. In [5 ] I. M. James develops homotopy theory for ex-spaces as
far as Puppe sequences, and in [6] he examines the Puppe sequence in a
special case in order to calculate ex-homotopy groups.

Further developments are hampered by the fact that no sufficiently
helpful homology theory for ex-spaces is known. In this paper we obviate
the need for one and use results from [2] and [3 ] to derive an EHP-se-
quence. The technique is to mimic globally the constructions of ordinary
homotopy theory and then to apply comparison theorems to deduce
theorems in exhomotopy theory from the corresponding theorems in or-
dinary homotopy theory. As an example of our main result we calculate
in § 6 some ex-homotopy groups involving the Hopf bundle which, to
my knowledge, were not previously obtainable.

1 am most grateful to Professor James for his help and encouragement
during the preparation of this work.

Throughout the paper we consider only Hausdorff spaces and adopt the
terminology of [2] and [3]. Let B be a connected, locally finite CW-com-
plex (although our arguments in Sections 1-3 pertain more generally for
B any locally contractible, para-compact, locally compact and path con-
nected space). Recall that an ex-space (E, p, a) (over B) consists ofa space
E and maps 03C1 : E ~ B, 03C3 : B ~ E such that p - 6 = 1 B and 03C3(B) is closed
in E.

For ex-spaces E, X the ex-spaces EvX (wedge sum), E x X (direct
product), ZE (reduced suspension), and E#X (smash product) are de-
fined in [5]. The loop ex-space (03A9E, p’, a’) of the ex-space (E, p, a) has
total space the subspace

of El where E’ has the compact open topology. The ex-structure is de-
fined by
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Recall from [2] that an ex-space (E, p, 03C3) is said to be docile if for

each point b E B there is a closed neighbourhood W(b) such that the
restriction ex-space (03C1-1W (b), 03C1|p-1W (b), 03C3|W(b)) over W(b) is ex-
homotopically equivalent to the product ex-space W(b) x F, where F is a
well-pointed space.

DEFINITION: An ex-space (E, p, 03C3) over B is a placid ex-space if 03C3 is a

cofibration, p is a Hurewicz fibration and the fibre of p has the pointed
homotopy type of a locally finite CW-complex.
By [2] Theorem 3.6 a placid ex-space is docile. The class of placid

ex-spaces over B is closed under product and smash product ([2] Corol-
lary 3.4 and [4] Lemma 8.1 ).

1. Reduced product ex-spaces

DEFINITION (1.1): An ex-space (E, p, 6) is distance-based if there exists
a map 03C8: E ~ [0, 1 ] such that 03C8-1(O)= 03C3(B). An ex-space (E, p, 03C3)
where the total space E is normal and a(B) is a closed (G, 03B4)- set of
E is distance-based ([10] p. 134). Thus any ex-space with a metrizable
total space is distance-based. If E is a distance-based ex-space then so are

the ex-spaces ZE and 03A9E.

Let En (n ~ 2) denote the ex-space obtained from the direct product of
n copies of the ex-space (E, p, 03C3) by making the identifications, for each
1 ~ i ~ n-1,

Since EB03C3(B) is open in E the inclusion ex-map in : En~ En+ 1, in(e1,···,
en) = (el , ’ ’ ’, en, 03C303C1(e1)), is open and embeds En naturally in En+ 1. Defi-

ne the reduced product ex-space to be Eoo = lim En.
If E is distance-based by the function gl an ex-map f : E~ ~ OIE may

be defined as follows. For (e1,···, en) ~ EnBEn-1 (n ~ 1) set

a i = 03C8(ei)B03A3nj=1 03C8(ej) and define

Take Eo = u(B), El = E. Then (1.2) defines f on E~BE0. The map f
is extended to an ex-map f : E. -+ OIE by defining (f(03C3(b)))(t)=
03C303A3E(b), 0 ~ t ~ 1.
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Let F be the fibre 03C1-1(b) of E at the point b E B. We then have En n
03C1n-1(b) = F., Eoo n p m 1 (b) = F~ where the right-hand sides are ob-

tained by the reduced product construction for the pointed space (F,
u(b». By D. Puppe’s refinement [11 ] (p. 234 Theorem 17.3) of the theo-
rem of I. M. James [8 ] we know that f|b is a homotopy equivalence if
(F, 03C3(b)) is an h-well-pointed, path-connected space which admits a
numerable null-homotopic covering. The same method of proof as in
[2] Proposition 3.8 establishes that En, Eoo and QE are docile ex-spaces if
E is a docile ex-space. By [2] Theorem 3.9 we then obtain

PROPOSITION (1.3): Let (E, p, a) be a docile distance-based ex-space
with fibre having the pointed homotopy type of a connected locally finite
CW-complex. Then the ex-map f : E~ ~ DEE in (1.2) is an ex-homotopy
equivalence.

2. The reduced join of ex-spaces

Let (E, p, u) and (X, p’, Q’) be ex-spaces. The total space of the re-
duced join E * X is obtained from E x X x I by making the identifications

The projection E * X - B takes (e, x, t)/~ to p(e), and the section
B - E * X takes b to (6(b), 03C3’(b), 0)/ -. There is a natural collapsing
ex-map E * X ~ E(E * X), which, by [15] p. 239, induces a homotopy
equivalence between the fibres of E * X and 03A3(E # X) over any point
b E B if the fibres of E and X over b are polyhedra.
By [2] Proposition 3.8 and Theorem 3.9 one has

PROPOSITION (2.1 ): Let E, X be docile ex-spaces with fibres having the
pointed homotopy type of locally finite CW-complexes. Then the collapsing
ex-map E * X ~ E(E * X) is an ex-homotopy equivalence.

1 remark in passing that by an application of [2] Theorem 3.9 similar
to that in (1.3) or (2.1) a Hilton-Milnor theorem for ex-spaces may be
obtained (see [4]).

3. Ex-homotopy exact sequences

The material in this section is a straightforward generalization of the
corresponding results in homotopy theory. The reader is referred to [4]
for more detailed proofs.

Let (Z, Z’, (X, X’ ), ( W, W’ ) be ex-space pairs ([3] Part 1 Section 4).
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Composition on the left by an ex-map f : (Z, Z’) - (X, X’) induces a
pointed function f# : 03C0(W, W’; Z, Z’) ~ 03C0(W, W’; X, X’), and com-
position on the right induces a pointed function f* : 03C0(X, X’ ; W, W’) ~
03C0(Z, Z’ ; W, W’). By restricting the domain and codomain of an ex-map
g : ( W, W’)~ (Z, Z’) to W’ and Z’ respectively one obtains an ex-map
03B4(g): W’~ Z’. This boundary operation respects ex-homotopy and
defines a pointed function ô : 03C0(W, W’; Z, Z’) - 03C0(W’, Z’).
By a Puppe sequence argument one deduces

PROPOSITION (3.1): (Exact ex-homotopy sequence of a pair).
Let W be an ex-space and (X, X’) be an ex-space pair. Then the sequence

···~03C0(03A3W, X’) 03C0(03A3W, X) d 7r(CW, W; X, X’) 1 03C0(W, X’)  03C0(W,
X), where i : X’ - X and j : (X, 03C3X(b)) ~ (X, X’) are inclusions, is exact.
The proof of [11 ] p. 378 Theorem 15 generalizes to yield

PROPOSITION (3.2): (Exact ex-homotopy sequence of a triple).
Let W, X, X’ and X" be ex-spaces such that (X, X’) and (X’, X") are

ex-space pairs. Then the sequence
···~ 03C0(C03A3W, 03A3W; X, X’)  7t(CW, W; X’, X")  7t(CW, W; X, X")
d 03C0(CW, W; X, X’) is exact, where i : (X’, X")~(X, X") and j : (X, X")
~ (X, X’) are the inclusions.

DEFINITION (3.3): Let E, X and K be ex-spaces. An ex-map q : E ~ X
has the ex-homotopy lifting property for K if, given an ex-map g : K - E
and an ex-homotopy F : K  I ~ X such that F0 = q· g, there exists
an ex-homotopy G : K x I~ E such that Go = g and q. G = F.

DEFINITION (3.4): The ex-map q : E ~ X is an ex-fibration if it has the
ex-homotopy lifting property for all ex-spaces K. If B is a CW-complex
the ex-map q : E - X is a Serre ex-fibration if it has the ex-homotopy
lifting property for all ex-complexes K. (Recall from [7] Section 5 that
the ex-space (K, p, 03C3) over B is an ex-complex if K is a CW-complex
with sub-complex u(B). An ex-complex is proper if the projection p
is a cellular map. If K is a proper ex-complex then CK and 03A3K are proper
ex-complexes. )

Example of an ex-fibration: Let (X, p, u) be an ex-space. Set P(X)=
{w E XI : 03C1(w(t)) = 03C1(w(0)) for all t ~I}, and assign to P(X) the sub-
space topology from XI, where XI has the compact open topology. The
space P(X) possesses a natural projection onto B(w F-+ p(w(0))) and also
a section (b ~ constant path at a(b), (b E B)). Hence P(X) is an ex-space.
The map q : P(X) ~ X, q(w) = w(1), is an ex-fibration.
The proof ([4] Proposition 5.4) of the next proposition is lengthy but

not difficulté.
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PROPOSITION (3.5) : Let E be an ex-space and (X, X’) an ex-space pair
over the [CW-complex] space B. Let q : E - X be a [Serre] ex-fibration,
and write E’ for the subex-space q-1(X’) of E. Then for any [proper ex-
complex] ex-space K the pointed function q# : 03C0(CK, K; E, E’) ~ 03C0(CK,
K; X, X’) is bijective.

PROPOSITION (3.6): (Exact ex-homotopy sequence of an ex-fibration).
Let E and X be ex-spaces over the [CW-complex] space B, and let q : E

~ X be a [Serre] ex-fibration. For any [proper ex-complex] ex-space K
the sequence

is exact, where D is the subex-space q-1(03C3X(B)) of E, i is the inclusion

ex-map: D c E, and 03B4’=03B4. -1#

Proposition 3.6 may be proved by applying Proposition 3.5 to the
exact sequence of the ex-space pair (E, D). As with the analogous exact
sequences in homotopy theory except near their tails the exact sequences
of (3.1), (3.2) and (3.6) are exact sequences of abelian groups.

4. A relative comparison theorem

Let K be a proper ex-complex over B.

THEOREM (4.1): (Relative Comparison Theorem)
Let (El , E2), (Xl, X2 ) be ex-space pairs over B where the projections

PEI’ PE2’ pXl , pX2 are Serre fibrations.
Suppose that, for some n ~ 1, f : (El, E2) ~ (Xl, X2) is an ex-map

whose restriction to a fibre is n-connected.l Then the function f# : x(CK,
K; El, E2) ~ 7r(CK, K; Xl, X2) is bijective for dim K  n-1, surjec-
tive for dim K ~ n -1.

PROOF: We construct the ex-space (P, p, à) where P = {w E EI1|w(1)
E E2, p(w(t)) = 03C1(w(0)) for all t E [0, 1]}, p(w) = PE1 (w(O», and

((b))(t) = UE1 (b) for all tEl. The ex-map p : P ~ El, p(w) = w(O), is
an ex-fibration. Set D = p-1(03C3E1(B)) and regard D as a subex-space of P
over B. Since pE2 and PEt are Serre fibrations the projection, p, say, of D
is a Serre fibration.

1 i.e. if Fi, F2, Yi, Y2 are the fibres of E1, E2, Xi, X2 respectively over some point
of B, then f|pt# : 03C0i(F1, F 2)-+ni(Y h Y2) is bijective for i  n, surjective for i ç n.
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Define the subex-space P’El of P(E1) over B to be the subex-space with
total space P’El = {w E EI1|w(0) E 03C3E1(B), p(w(t)) = 03C1(w(0)) for all

t ~I}. The map p’ : P’E1 ~ E1, p’(w) = w(1) is an ex-fibration, and
D = p’-1(E2). Since P’El is ex-contractible, by Proposition 3.1 7r(CK,
K; P’El, D) 1 03C0(K, D) is bijective regardless of dim K. Also, by Prop-
osition 3.5, x(CK, K; P’El, D)  03C0(CK, K; El, E2) is bijective (regard-
less of dim K).
The ex-map f induces a commutative diagram

where YY bears the same relation to Xl, X2 as D does to El, E2. By [7]
Theorem 6.3 the right-hand f# is bijective if dim K  n-1, surjective if
dim K ~ n-1, and Theorem 4.1 follows.
The following collapsing theorem is immediate from Theorem 4.1 and

[12] p. 487 Corollary 6.

COROLLARY (4.2): Let (El, E2) be an ex-space pair over B, where
PEt’ PE2 and PEt/E2 are Serre fibrations. Let Fl, F2 be the fibres of El , E2
over some point of B. Suppose that F2 is m-connected, m ~ 1, and (Fl ,
F2) has the homotopy type of an n-connected relative CW-complex, n ~ 2.
Then the function

induced by the collapsing ex-map k : (El , E2) ~ (El/E2’ 03C3E1/E2(B) is bi-

jective for dim K  m + n, surjective for dim K ~ m + n.
We remark in passing that Theorem 4.1 in conjunction with [12] p.

484 Theorem 5 yields an ex-homotopy excision theorem.

5. The EHP-sequence

Our objective is to investigate the suspension functor 1 in the metastable
range.

PROPOSITION (5.1): (Stability theorem) (c. f. [7] Theorem 6.4)
Let (E, p, 03C3) be a Hurewicz ex-space over B, where u is a cofibration, and

let K be an ex-complex over B. If the fibre of E is m-connected, then the
suspension function

is injective if dim K ~ 2m, surjective if dim K ~ 2m + 1.
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PItooF: By [2] Corollary 3.4 the projection of the ex-space 03A903A3E is a

fibration, and so [7] Theorem 6.3 may be applied in the same way as in
the proof of [7 ] Theorem 6.4 to prove our proposition.

THEOREM (5.2) (EHP-sequence): Let (E, p, u) be a placid, distance-
based ex-space whose fibre F is m-connected (m ~ 1) and let K be a proper
ex-complex of dimension k. Then there are pointed functions H, P (all
H, P except the fznal P are homomorphisms between ex-homotopy groups)
such that the following sequence is exact:

PROOF: The restriction to the fibres of the inclusion ex-map: E2 c E.
(see Section 1 for notation) is the inclusion map : F2 c F 00. The function
inclusion, : 03C0r(F2) ~ nr(F (0) is bijective for r  3m+2 and surjective
for r ~ 3m + 2. By the comparison theorem ([7]Theorem 6.3) inclusion#
: 03C0(K, E2) ~ 03C0(K, Eoo) is injective if dim K  3m + 2, surjective if dim
K ~ 3m+2. (Observe that the projections of E2 and E~ are Hurewicz
fibrations by a proof similar to that of [2] Corollary 3.4. Namely, if 03BB

is a special lifting function for p with respect to 03C3 then the composite map

factors through 03A903C1n.)
From the exact ex-homotopy sequence of the pair (E~, E2) (Proposi-

tion 3.1 ) we have 03C0(CK, K ; Eoo, E2) = 0 for dim K  3m + 2. By Prop-
osition 3.2

is exact, and so

is injective for dim K  3m + 2, and surjective for dim K ~ 3m + 2.
The collapsing ex-map: (E2, E) ~ (E2/E, O’E2/E(B)) induces a pointed

function

which by Corollary 4.2 is injective for dim K  3m + 1 and surjective for
dim K ~ 3m+1.
The pointed space F # F is 2m-connected, and so by Propositions 5.1

and 2.1
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is injective for dim K ~ 4m, and surjective for dim K ~ 4m + 1.
Consider the ex-homotopy exact sequence (3.1) of the pair (E~, E)

where i, j are inclusion ex-maps. By Proposition 1.3 there is a bijection:
x(K, E~) ~ 03C0(K, f2fE) for all dim K, and (5.3), (5.4) and (5.5) provide a
bijection: 03C0(CK, K; E~, E) ~ 03C0(03A32K, E * E) for dim K  3m+1.

Inserting these bijections in (5.6) and observing that the diagram

commutes, one deduces Theorem 5.2.
When the fibre F of p is a sphere one can obtain information about 1

irrespective of the dimension of K.

THEOREM (5.7.i): Let (E, p, a) be a placid distance-based ex-space over
B with fibre sm, m odd. Let K be a proper ex-complex over B. Then there
are pointed functions H, P (homomorphisms except for the final P) such
that the sequence

is exact.

PROOF: Write c : (E2, E) - (E # E, B) for the collapsing ex-map,
and C : (Eoo, E) ~ ((E # E)#, B) for the combinatorial extension of c
see [8 ] p. 176 Lemma 2.5). By the theorem of I. M. James ( [9 ] Theorem 1.2
or [14] Theorem 2.4), (C|fibre)# : 03C0i((Sm)~, sm) --+ 03C0i((S2m)~) is iso-

morphism for all i. By Theorem 4.1 C#: 03C0(CK, K; E~, E) ~ 03C0(03A3K,
(E fl E)~) is bijective. Theorem 5.7 (i) follows from the ex-homotopy
exact sequence of the pair (E~, E) as in the last paragraph of the proof of
Theorem 5.2.

Let W be the Serre class of torsion abelian groups of odd order.

THEOREM (5.7ii): Let (E, p, 0’) be a placid distance- based ex-space over
a finite CW-complex B with fibre Sm, m even. Let K be a proper placid ex-
complex over B with compact total space. Then there is a %-exact se-

quence
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PROOF: We use the notation in Theorem 5.7(i). We know that
(C|fibre)#: 03C0i((Sm)~, Sm)~ 7ri«S’ # sm)~, *) is a L-isomorphism
for all i (by [9] Theorem 1.3 or [14] Theorem 2.4). To deduce that

is a L-isomorphism one uses [3] Theorem 3.1 made relative by the ar-
gument of Theorem 4.1.

6. Some calculations

Let E3 denote the fibre suspension of the Hopf bundle over S2, and re-
gard E3 as an ex-space over S2 by choosing a cross-section (in one of the
obvious ways). For r &#x3E; 3 inductively define the ex-space Er over S2 by
Er = lEr-1. (By [7] Theorem 6.1 Er is ex-homotopically equivalent to
the sphere bundle (with section) associated to the Whitney sum of
the canonical complex line bundle over CP1, regarded as a real vector
bundle, and the product bundle over CP 1 with fibre Rr-2.)

By [6] Theorem (1.6), (1.8) there is an exact sequence

where

where 03B2 E n 1 (02) is the classifying element for the Hopf bundle. We
adopt standard notation (Toda [14]); then 03C06S4 ~ Z2 is generated by
03BC· 03BC&#x3E; and 1t5 S4 ~ Z2 is generated by ~&#x3E;. Since P(I1. 11) = 0 and
03A8’(~) = 0 we deduce that 03C0(E6, E5) is an extension of Z ~ Z12 by Z2 ,
but at this stage we do not know which. Similarly 1t(E7, E6) is either
Z2 O Z2 4 or Z48.
Apply Theorem 5.2 (the EHP-sequence) with "K" = E5, "E" = E5,

"F" = S4, "m" = 3, "B" = S2, "k" = 4+2 = 6. We have 3m-k+1
= 4 and so the following sequence is exact

Comparing this sequence with the previous results we obtain (6.1 ).
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From the exact sequence of [6] 

is exact. This sequence is:

The finale is surjective since it is the last ex-suspension before the stable
range, and by the specific nature of the groups it is an isomorphism. From
(6.1) and the exact sequence we deduce that n(E5, E4) ~ Z24 .
REMARK: All auxiliary ex-homotopy groups used in this calculation

can be computed using [6] and standard results on the homotopy groups
of spheres.

Further remarks:

Let D, E, X be ex-spaces, and let u : ZD - X, v : ZE - X be ex-maps.
We define an ex-map [u, 03BD]: D*E - X as follows. Regard u, v as ex-maps
of pairs

The map u x v determines an ex-map : CD x CE - X x X, and the

restriction to the subex-space CD x E D x CE = D*E maps into XVX
and determines an ex-map : D*E ~ XVX. The composite of this ex-map
with the folding ex-map: XvX ~ X is denoted [u, v ]. If the ex-maps u, u’ :
ZD - X are ex-homotopic then so are [u, 03BD] and [u’, v], and the analo-
gous statement holds for v. Thus a pairing,

called the Whitehead product, is induced at the ex-homotopy level.
As one would expect, the function P in Theorem 5.2 is related to the

Whitehead product. Suppose in Theorem 5.2 that E = IE’ where E’
is a placid ex-space. Then one can show by a naturality argument (see
[4] Theorem 6.5) that the diagram
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commutes, where i : 03A3E’ ~ 03A3E’ is the identity ex-map. One corollary of
this result is that, with appropriate conditions on the ex-spaces El and
E2, if a E n(EE1’ X) and /3 E rc(EE 2, X) thef P(- [a, fi]) is precisely the
join 03B1*03B2 ~ 03C0(03A3E1*03A3E2, X* X).

One can easily derive many properties of the Whitehead product along
the lines of [1 ] by introducing an ex-homotopy theory analogue of the
Samelson product (see [4]). However at later stages difficulties arise, some
of which may be discussed in a future paper.
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