On the weak-basis theorem
Compositio Mathematica, Tome 27 (1973) no. 2, p. 213-215
@article{CM_1973__27_2_213_0,
     author = {Kalton, N. J.},
     title = {On the weak-basis theorem},
     journal = {Compositio Mathematica},
     publisher = {Noordhoff International Publishing},
     volume = {27},
     number = {2},
     year = {1973},
     pages = {213-215},
     zbl = {0269.46012},
     mrnumber = {350385},
     language = {en},
     url = {http://www.numdam.org/item/CM_1973__27_2_213_0}
}
Kalton, N. J. On the weak-basis theorem. Compositio Mathematica, Tome 27 (1973) no. 2, pp. 213-215. http://www.numdam.org/item/CM_1973__27_2_213_0/

[1] G. Bennett and J.B. Cooper, Weak bases in (F)- and (LF)-spaces, J. London Math. Soc. (1) 44 (1969) 505-508. | MR 239385 | Zbl 0172.15902

[2] C. Bessaga and A. Pelczyński, Properties of bases in spaces of type B0, Prace Mat. 3 (1959) 123-142 (Polish). | MR 126691 | Zbl 0097.09203

[3] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Can. J. Math. 5 (1953) 129-173. | MR 58866 | Zbl 0050.10902

[4] S. Kakutani, Concrete representation of abstract (L)-spaces and the mean ergodic theorem, Ann. Math. (2) 42 (1941) 523-537. | JFM 67.0419.01 | MR 4095 | Zbl 0027.11102

[5] S. Kakutani, Concrete representation of abstract (M)-spaces, Ann. Math. (2) 42 (1941) 994-1024. | MR 5778 | Zbl 0060.26604

[6] C.W. Mcarthur, On the weak basis theorem, Coll. Math. 17 (1967) 71-76. | MR 216268 | Zbl 0161.33201

[7] I. Singer, Weak*-bases in conjugate Banach spaces, Stud. Math. 21 (1961) 75-81. | MR 138975 | Zbl 0132.08905

[8] I. Singer, Bases in Banach spaces I, Springer-Verlag, Berlin 1970. | MR 298399 | Zbl 0198.16601