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Introduction

This note concerns metric (measure theoretic) and topological prop-
erties of concrete dynamical systems on compact metric spaces with an
invariant measure, as reflected in cocycle conditions. Cocycles arise
specifically in group extension problems and problems concerned with
velocity changes. These two classes of problem may be put together in
terms of group extensions if the stringent condition that all flows under
consideration must commute with the group, is relaxed. It has to be

admitted, however, that the foundations of this point of view are yet to
be laid. Instead of pursuing this line of thought, we display as our main
purpose a connection between two examples; one of Kolmogorov’s and
one of Furstenberg s. A third example, related to one of Ellis , is displayed
as an illustration of the cocycle technique.

1. Flows

Let T be a continuous flow of homeomorphisms on a compact metric
space X i.e. for each t ~ R, T is a homeomorphism of X, the map
X x R - X((x, t) ~ T x) is continuous and Ys 0 T = Ts+t, To = I. Let T

preserve a normalised Borel measure m. If G is a locally compact abelian
group acting continuously as m preserving homeomorphisms on X, such
that Ttgx = gTtx for all t E R, g ~ G, x E X then we can construct other
flows T9 by T~tx = qJ(x, t)Ttx where ~ : X x R ~ G is continuous as long as
9 is a cocycle with values in G i.e.

(The group operation in G is written multiplicatively) and cp is G invariant

The flow Tlo also preserves m and commutes with G.
The set of cocycles with values in G is an abelian group with pointwise

multiplication denoted by Z(T, G). Cocycles of the form f(Ttx)f(x)-1
for continuous maps f : X ~ G are called coboundaries and they form a
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sub-group of Z(T, G) denoted by B(T, G). Subgroups Zo(7; G), Bo(7; G)
are defined by the condition (1.2) and correspond to the cocycles and
coboundaries of an induced flow on X/G when this makes sense. In fact
T can be thought of as a G-extension of its induced flow on X/G and
along with it, under certain conditions, the flows T° exhaust all such
extensions which commute with G. For compact G related problems
have been studied in [1] [2] [3] [4] [5] and [6].

If a flow T is replaced by a single measure preserving homeomorphism
S (so that the flow {Sn:n~Z} replaces {Tt:t~R}), then the same con-
siderations apply if (1.1) and (1.2) are replaced by

and a coboundary is defined as a function of the form
where f : X - G is continuous.

2. Change of velocity

We continue with a measure (m) preserving flow T on a compact
metric space, but no auxiliary group G is involved. Let k:X ~ R be a
strictly positive continuous function and for normalisation purposes
assume that Xk dm = 1. Let k(x, t) = t0k(Tsx) ds so that

k is a (positive) cocycle with values in R. It is easy to show there exists a
unique continuous map h:X R~R which is inverse to k in the sense

that

If we define ’T by kTt(x) = Th(x,t)(x) then kT is a p preserving flow where
J1(B) = f B kdm. The flows ’T exhaust all flows which are obtained from
T by changing velocity positively i.e. flows with the same orbits and
orientation in which velocity is not changed abruptly as one traversesX.
Just as a variety of problems can be posed (and some solved) concerning

G-extensions by considering G cocycles so a number of problems present
themselves concerning changes of velocity. In this connection Chacon [7]
showed (not using cocycles) that ergodic flows may be changed to weak-
mixing flows by altering velocities. Humphreys proved a topological
analogue to Chacon’s theorem using cocycle techniques [8]. Actually
early work in this area was begun by Hopf (who posed Chacon’s problem)
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p. 43 [9], and resembles analyses of certain wellknown examples of
Kakutani and Von-Neumann. Maruyama [10] and Totoki [11] have
also investigated velocity changes. The Chacon problem received further
treatment by the author in [12].
As far as velocity changes are concerned this note investigates an

example due to Kolmogorov [13] : There is an ergodic measure preserving
flow on the torus which has discrete spectrum (metrically) but has no
non-constant eigen-functions (i.e. is topologically weak-mixing.) The
proof we shall present imitates Furstenberg’s construction of a minimal
homeomorphism of the torus which is not uniquely ergodic.

3. Furstenberg’s example and discontinuous eigenfunctions

Let X = {(x, y):x,y~C,|x| = Iyl = 1} be the two dimensional torus.
Let a = e203C0i03B1 where a is irrational. Let S(x, y) = (ax, 9(x)y) where ç maps
the circle to itself continuously.

S is minimal if and only if

has no continuous solution f except when k = 0 [2].
S is uniquely ergodic if and only if

has no measurable solution f except when k = 0 [2], or, for that matter,
if and only if S is ergodic with respect to Haar measure.
Furstenberg constructs an example in [2], where (3.2) has a solution

for k = 1 but (3.1) has no continuous solution except when k = 0. In
other words, the example is of a homeomorphism (actually C°°) of X
which is minimal but not ergodic (uniquely ergodic). Let S be Fursten-
berg’s example, then it is easy to show that for almost all g in the circle
Sg(x, y) = (ax, g~(x)y) is ergodic and uniquely ergodic, and using the
metric conjugacy (x, y) - (x, f (x) y), we see that Sg is metrically iso-
morphic to (x, y) - (ax, gy) which is ergodic with discrete spectrum.
However the eigenfunction of Sg,

corresponding to the eigenvalue g cannot be made continuous, for other-
wise (3.1) would have a continuous solution. In fact metrically the group
of eigenvalues = {03B1mgn:m,n~Z} whereas topologically, the group of
eigenvalues = {03B1m : m E Z}. Kolmogorov’s example, which we will analyse,
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reduces the group (topologically) even further to the trivial group.
Before investigating this, however, we shall consider an example of a
minimal homeomorphism on the Klein bottle.

4. Klein bottle X’

(c.f. Ellis [3] for the first example of a minimal homeomorphism on X’.)
Let S(x, y) = (ax, (p(x)y) be a homeomorphism of the torus X, where

as usual a = 22nia with a irrational. Consider the Z2 action on X given by
1:(x,y)~(x,y), -1:(x,y)~(-x,y-1). Then X’=X/Z2 is the Klein

bottle, and Z2 commutes with S if and only if ~(-x) = ~(x)-1. Let
~(x) = e21tir(x) where r is a continuous map of the circle to the reals with
absolutely convergent Fourier series r(x)=03A3anxn (= -r(-x) =
03A3-anxn(-1)n if, as we suppose a2n = 0, for all n E Z). S will induce a
minimal homeomorphism S’on X’if S is minimal. The problem then is to
find a real valued absolutely convergent Fourier series

such that S(x, y) = (ax, ~(x)y), ~(x) = e2nir(x) is minimal. In other words
we require (3.1) to have no continuous solution except when k = 0. By
considering the absolute value in equation (3.1) it is clear that solutions
have constant absolute value so there is no loss in generality in restricting
our attention to functions , f such that |f| = 1. If , f is a continuous func-
tion such that If = 1 then f (x) = xle203C0.ih(x) where 1 is an integer and
h : X - R is continuous. For (3.1) to have the solution f we must have

i.e. la + h(ax) = kr(x) + h(x) + b where b is an integer. Integration shows
that

so that dividing by k, we need only find a real valued absolutely con-
vergent Fourier series

such that (4.1) has no continuous solution h, if k ~ 0. In fact if (4.1) has a
continuous solution h with Fourier series LnEz bnxn, then again b2n = 0
and (a 2n+l -1)b2n+l = an. Hence if we let an = 0 for n ~ N and an =

(a2n+1 - 1) for n 0 N where 03A3m~N|a2n+1 - 1|  ~, then b2n+ 1 = 1 for

n ~ N and 03A3n~Nbnxn is not the Fourier series of a continuous function.
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This completes the construction. Notice that we have not shown that S
is uniquely ergodic. In fact there are minimal non uniquely ergodic
homeomorphisms of a Klein bottle using Furstenberg’s construction.

5. Kolmogorov’s example [13]
The considerations of this section are closely related to Arnold [14],

Kowada [15]. We consider the flow T, on X (the torus) given by Tt(x, y) =
(e21titcxx, e21tit y) where a is an irrational to be chosen later. We wish to find
a change of velocity flow ’T (preserving the measure kdm) which has dis-
crete spectrum but no continuous eigenfunctions other than constants.
An eigenfunction f of ’T satisfies

If f is continuous then so that

and integration yields

where ko = k -1, ko = k(x, t) - t. We shall arrange for the equation

to have no continuous solution, whereas the equation

for each t E R will have a solution in 13.
In this case, as we have seen, the flow k T will have no continuous eigen-

functions other than constants. On the other hand the solution to (5.2)
allows us to establish a metric conjugacy between T and k T showing
that k T has discrete spectrum (since T has discrete spectrum.)

If ko is a sufficiently small real valued continuous function on X with
k0dm = 0 then k = 1 + k0 is a strictly positive continuous function
allowing us to construct the velocity change kT. Evidently
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and if cp is a solution of (5.2) then the diagram

commutes a.e. since, substituting k(x, t) for t, we have ~(Ttz)+t =

k(z, t) + cp(z) a.e. or, in other words, ~Tt-~ = ko(z, t) a.e. It is not difficult
to show that z - T~(z)(z) is a measurable measure preserving (k dm to dm)
invertible (mod 0) transformation of X to itself; thus defining a con-
jugacy between ’T and T.
Our task then is to find a continuous real function ko with f ko dm = 0

such that (5.2) has a solution whilst (5.1) has no continuous solution.
(Making ko small is no problem, since we may simply multiply it by a
small number.)

Let

be an absolutely convergent Fourier series where the positive integers
mr, nr and the real coefficients a(r) are to be determined.

where S is the first part of this expression, so that if ç E L2(X) has Fourier
series

and satisfies (5.2) then

i.e.
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Let a(r) = (mrll - nr)/r so that br = 1/203C0ir (r =1= 0). In this case we

see that (5.3) is the Fourier series of an L2 function. Let a = Lf= 1 1/2vi
where vn+1-vn=03B8n then

Let mr = 2Vr, nr = [2’’ra] and note that mr = 0 mod 4, nr = 1 mod 4

(if 0, 2). In this case (5.3) is not the Fourier series of a continuous func-
tion since (putting x = Ri = y)

(Abel convergence test c.f. [16].)
The function ko will be determined once we have specified the positive

sequence en . The Fourier coefficient of the term xmry - nr is

By choosing 0r judiciously one can make ko a COO function. In other words
C~ flows on the torus exist with (metric) discrete spectrum and with no
non-constant eigenfunctions.

6. Conclusion

Each of the problems considered here amounts to a cocycle - co-
boundary problem. ,In Section 3 Furstenberg required a continuous
cocycle which was the coboundary of a measurable but not continuous
function. In Section 4 we required a spècial continuous cocycle which
was not a coboundary. In Section 5 we required a continuous cocycle
which was the coboundary of a measurable but not continuous function.
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