Algebraic systems of linearly equivalent divisor-like subschemes
Compositio Mathematica, Tome 29 (1974) no. 2, p. 113-139
@article{CM_1974__29_2_113_0,
     author = {Altman, Allen B. and Kleiman, Steven},
     title = {Algebraic systems of linearly equivalent divisor-like subschemes},
     journal = {Compositio Mathematica},
     publisher = {Noordhoff International Publishing},
     volume = {29},
     number = {2},
     year = {1974},
     pages = {113-139},
     zbl = {0337.14009},
     mrnumber = {376668},
     language = {en},
     url = {http://www.numdam.org/item/CM_1974__29_2_113_0}
}
Altman, Allen B.; Kleiman, Steven L. Algebraic systems of linearly equivalent divisor-like subschemes. Compositio Mathematica, Tome 29 (1974) no. 2, pp. 113-139. http://www.numdam.org/item/CM_1974__29_2_113_0/

[1] A. Altman and S. Kleiman: Introduction to Grothendieck Duality Theory. Lecture Notes in Math. Vol. 146. Springer-Verlag, (1970) (cited GD). | MR 274461 | Zbl 0215.37201

[2] A. Altman and S. Kleiman: On the Purity of the Branch Locus. Compositio Mathematica, Vol. 23, Fasc. 4, (1971) pp 461-465. | Numdam | MR 308118 | Zbl 0242.14001

[3] P. Berthelot, A. Grothendieck, L. Illusie: Théorie des Intersections et Théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois Marie 1966/67. Lecture Notes in Math., Vol. 225. Springer-Verlag, (1971) (cited SGA 6). | MR 354655 | Zbl 0218.14001

[4] A. Grothendieck: Technique de descente et théorèmes d'existence en géométrie algébrique. V. Les schémas de Picard. Théorèmes d'existence. VI. Les schémas de Picard. Propriétés générales. Fondements de la géométrie algébrique. Extraits du Séminaire Bourbaki, 1957-62, multigraphié (cited FGA 232, FGA 236). | Numdam | Zbl 0238.14015

[5] A. Grothendieck and J. Dieudonné: Eléments de Géométrie Algébrique I. Springer-Verlag (1971) (cited EGA 0I, EGA I). | Numdam | Zbl 0203.23301

[6] A. Grothendieck and J. Dieudonné: Eléments de Géométrie Algébrique. Publ. Math. No. 8, 11, 17, 21, 32. IHES, (1961, 1961, 1963, 1965, 1967) (cited EGA II, EGA III, EGA III2, EGA IV, EGA IV4). | Numdam