Square-integrable representations mod Z of unipotent groups
Compositio Mathematica, Volume 29 (1974) no. 2, p. 141-150
@article{CM_1974__29_2_141_0,
     author = {Van Dijk, G.},
     title = {Square-integrable representations mod $Z$ of unipotent groups},
     journal = {Compositio Mathematica},
     publisher = {Noordhoff International Publishing},
     volume = {29},
     number = {2},
     year = {1974},
     pages = {141-150},
     zbl = {0301.22013},
     mrnumber = {364560},
     language = {en},
     url = {http://www.numdam.org/item/CM_1974__29_2_141_0}
}
Van Dijk, G. Square-integrable representations mod $Z$ of unipotent groups. Compositio Mathematica, Volume 29 (1974) no. 2, pp. 141-150. http://www.numdam.org/item/CM_1974__29_2_141_0/

[1] A. Borel: Représentations de groupes localement compacts. Springer Lecture Notes vol. 276, 1972. | MR 414779 | Zbl 0242.22007

[2] J.M.G. Fell: A new proof that nilpotent groups are CCR. Proc. Amer. Math. Soc., 13 (1962) 93-99. | MR 133404 | Zbl 0105.09602

[3] Harish-Chandra (Notes by G. Van Dijk): Harmonic analysis on reductive p-adic groups. Springer Lecture Notes, vol. 162, 1970. | MR 414797 | Zbl 0202.41101

[4] Harish-Chandra: Harmonic analysis on reductive p-adic groups (1972) to appear.

[5] N. Jacobson: Lie algebras. Interscience Publishers, New York, 1962. | MR 143793 | Zbl 0121.27504

[6] A.A. Kirillov: Unitary representations of nilpotent Lie groups. Uspekhi Mat. Nauk, vol. 17 (1962) 57-110. | MR 142001 | Zbl 0106.25001

[7] H. Matsumoto: Fonctions sphériques sur un groupe semi-simple p-adique. C.R. Acad. Sc., Paris, t. 269 (1969) 829-832. | MR 263977 | Zbl 0189.44802

[8] C.C. Moore: Decomposition of unitary representations defined by discrete subgroups of nilpotent groups. Ann. of Math., 82 (1965) 146-182. | MR 181701 | Zbl 0139.30702

[9] C.C. Moore and J. Wolf: Square integrable representations of nilpotent groups (1973) to appear. | MR 338267 | Zbl 0274.22016

[10] L. Pukanszky: Leçons sur les représentations des groupes. Dunod, Paris, 1967. | MR 217220 | Zbl 0152.01201