
COMPOSITIO MATHEMATICA

A. J. ELLIS
Central decompositions for compact convex sets
Compositio Mathematica, tome 30, no 3 (1975), p. 211-219
<http://www.numdam.org/item?id=CM_1975__30_3_211_0>

© Foundation Compositio Mathematica, 1975, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1975__30_3_211_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


211

CENTRAL DECOMPOSITIONS FOR COMPACT CONVEX
SETS

A. J. Ellis

COMPOSITIO MATHEMATICA, Vol. 30, Fasc. 3, 1975, pag. 211-219
Noordhoff International Publishing
Printed in the Netherlands

1. Introduction

In this paper we continue the investigation, begun in [8], into facial
decompositions for compact convex sets K. In particular we study
conditions on K under which the Bishop decomposition determines A(K),
or at least determines the centre of A(K) ; the special case when K is the
state space of a unital C*-algebra is’ investigated in this connection. In
the final section we prove a result for function algebras which is related
to facial decompositions, and we also give a simple geometrical proof
of the Hoffman-Wermer theorem.

We are indebted to several mathematicians for discussions concerning
the contents of this paper, and in particular to E. G. Effros and E. St~rmer.

2. Terminology and preliminaries

Let K be a compact convex subset of a locally convex Hausdorff space
and let A(K) denote the Banach space of all continuous real-valued affine
functions on K, endowed with the supremum norm. The set of extreme

points of K will be denoted by ôK, and its closure by ôK. The sets of
constancy in ôK for the central functions in A(K) form a decomposition
{E03B1} of ôK, such that Ea = 8 Fa for some closed split face F03B1 of K (cf. [1]).
It was shown [8] that the disjoint faces Fa always cover 8K and that they
determine A(K) in the sense that

The family {F03B1} is called the Silov decomposition for K.
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A subset E of ôK is a set of antisymmetry if f is constant on E whenever
j E 4 j K ) and f IcoE belongs to the centre of A(coE). (Here, coE denotes
tlie closed convex hull of E.) A(K) is said to be antisymmetric if 8K is
a set of antisymmetry. It was shown [8] that each x in êK belongs to a
maximal set of antisymmetry Ee and that each Ep has the form ôfo,
where (Fo) is a family of pairwise-disjoint closed split faces of K. The
family (Fo) is called the Bishop decomposition for K.
The essential set for A(K) is the smallest closed subset E of 8 K such

that A(K)18K contains the ideal {f ~ CR(K) : f (x) = 0, x~E}. The set
FE = coE is the smallest closed (split) face F of K such that whenever
B and C are closed subsets of ôK, with B 2 F n ôK and C n F = p, then
coB and coC are split faces of K (cf. [8]). The annihilator in A(K) of FE
is the essential ideal of A(K).
K is said to satisfy Stprmer’ s axiom if the closed convex hull of an

arbitrary family of closed split faces of K is again a split face of K. For
x in ôK let Fx denote the smallest closed split face of K containing x,
and let U denote the family of all continuous affine bijections a : K - K
such that a(Fx) = Fx for all x in aK. Then K is said to admit sufficiently
many inner automorphisms if Fx = co (ax : a E Ul for all x in 8K.

3

In [8, Example 10] an example was given ofa simplex K for which the
Bishop decomposition fails to determine A(K). However, using an
adaptation of a proof of Glicksberg [10], we proved that if êK is closed
then the Bishop decomposition does determine A(K) ; we now extend that
result.

THEOREM (1): If the Bishop decomposition for K covers 8K then the
decomposition determines A(K).

PROOF : Let y be an extreme point of the unit ball of the space of all
Radon measures on êK which annihilate A(K)IaK. As in [8, Theorem 8]
the result will follow if we can show that the support D of J1 is contained
in some F /3 .
Suppose that no single F 13 contains D. Let G be the smallest closed

split face of K containing all sets F 13 which intersect D. Then aG is not
a set of antisymmetry, and so there exists a central function f in A(G)
which is not constant. Since the restriction of f to F 13 is central in A(F 13)’
f must be constant on each F03B2. For each g in A(G) there exists an h
in A(G) such that h(x) = f (x)g(x) for all x in èG. If y belongs to D then
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y lies is some F 13 contained in G, and since f is constant on F 13 we have
h(y) = f(y)g(y).

_

Assuming that 0  f  1, define Radon measures li 1, ,u2 on 8K by

for all u in CR(aK). Then /1 = 03BC1 + 112 and ~03BC1~ + ~03BC2~ = 1. For each g
in A(K) there exists, by the above argument together with the fact that G
is a closed split face of K, an h in A(K) such that h(y) = f (y)g(y) for all
y in D. Therefore

so that 03BC1, and similarly ,u2, annihilates A(K)IîK. Since y is extreme

it follows that /11 = /1 = 03BC2, and that f is constant on D.
If f(y) = À for all y in D, let H = co {x~~G : f(x) = 03BB}. Then H is a

split face of G, and hence a split face of K. Moreover H contains all the
faces Fp which intersect D, so that H = G. But then f is constant on G,
and this contradiction completes the proof.
A consequence of Theorem 1 is that if every point of 8K belongs to some

closed split antisymmetric face of K then the Bishop decomposition
determines A(K). The following example shows that the converse of
Theorem 1 is false even for metrizable simplexes.

EXAMPLE: Let K be a compact metrizable simplex such that K = K

(cf. [14]). Define K such that

where L is a fixed two-dimensional subspace of A(K) containing the
constants and ~f~ = sup {~fn~ :n ~ 01. Then K is the closed convex hull
of countably many copies Kn of K, together with a closed line segment I.
The Bishop decomposition for K consists of the faces Kn and the extreme
points of I, and aK is the union of the K, together with I. Hence the
Bishop decomposition fails to cover êk. However, if f ~ CR(aK) is such
that 11 K,, E A(Kn) for each n it is straightforward to check that 1 is affine
on I, and that 1 is the restriction of some f in A(K); therefore the Bishop
decomposition determines K. Finally, since K is a simplex A(K) has the
Riesz interpolation property, and if f l , f2, ,g 1, 22 E A(k) with
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for some e &#x3E; 0, it is easy to construct coordinately an h ~ A(K) with
fi, f2 ~ h ~ g1, g2 . It follows that K is a simplex.

It has been pointed out to us that if K is the state space of the C*-
algebra in [16, p. 136] then, in a similar manner, it can be shown that the
Bishop decomposition determines A(K) but does not cover aK. We do
not know any necessary and sufficient conditions for the Bishop de-
composition to determine A(K).

Every closed linear subspace L of CR(ÊK) which contains A(K)IAK is
isometrically order-isomorphic to a space A(H), for some compact convex
set H. The next result shows that there always exists a smallest such space
L for which the Bishop decomposition for N determines A(H).

THEOREM (2): If K denotes the state space of the ordered Banach space
L = {f E CR(ôK) : f l(Fp n oK)EA(Fp)I(Fp n aK), 03B2}, then the Bishop
decomposition for K determines A(K).

PROOF : Since the Choquet boundary êk for L contains îK, the Silov
boundaries ~K for L and îK for A(K)loK coincide. Let x ~ ~K and let C
be the maximal A(K)-antisymmetric subset of ak which contains x. If
x ~ F 13 and if G is the smallest closed split face of K which contains ~F03B2,
then we will show that A(G) is antisymmetric.

In fact, let f be central in A(G), so that f extends to a function in A(K).
Then, if g ~ A(F03B2) = A(K)IF 13’ there exists an h in A(k) such that

h(y) = f(y)g(y) for all y in ~F03B2. The definition of L, together with the fact
that F 13 belongs to the Bishop decomposition for K, now implies that f
is constant on oF p. Since f is central in A(G) and G is the smallest closed
split face of K containing ~F03B2, we conclude that f is constant on G,
therefore C contains ~F03B2.

If f E CR(~K) and if f 1 C E A(co C)j C (where co C denotes the closed
convex hull of C in K, and hence belongs to the Bishop decomposition
for K) then f|C has an extension f E L. Hence floF 13 has an extension
belonging to A(F 13). Since x ~ ~K was chosen arbitrarily it follows that
the Bishop decomposition for K determines A(K).
For the simplex K in [8, Example 10] the set K is a Bauer simplex,

identifiable with the base of the positive cone in t 1 . In this example the
centres of A(K) and A(K) are distinct, and the essential ideals of A(K)
and A(k) are also distinct. If K (not necessarily a simplex) satisfies certain
conditions, then the following result shows that these distinctions do not
occur.

THEOREM (3): Let K satisfy Stormer’s axiom and admit siffficiently
many inner automorphisms. Then
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The essential ideals of A(K) and A(K) coincide and, in particular, K is a
Bauer simplex if and only if K is a Bauer simplex.

PROOF : For each x E aK denote by Jx the primitive ideal

so that Jx E Prim A(K). By [1, Theorem II 6.30] the map x  Jx is

open from the relative topology of aK to the hull-kernel topology of
Prim A(K). Now if f E CR(oK) is constant on each Fp n aK, then f is
constant on each aFx since ôFx is a set of antisymmetry for A(K). Therefore
the equation

defines a continuous function f on Prim A(K), and hence Alfsen and
Andersen’s version of the Dauns-Hofmann theorem [1, Theorem II 7.20]
shows that f|~K belongs to (the restriction of) the centre of A(K). If h
belongs to A(K) then the definition of A(k) shows that f h. belongs to
A(K)IêK, and therefore f belongs also to (the restriction of) the centre
of A(K).
If 1 is central in A(K) then l is certainly constant on each F03B2. If l’ is

central in A(K) then l’|(F03B2 ~ ~K) is central in A(Fp); in fact if pEA(Fp)
then p = qlF 13 for some q in A(K), and so there exists an s ~ A(K) with
s = l’ · q on oK, that is sl(Fp n ~K) ~ A(F03B2)|(F03B2 n aK) and s = l’ · p on

affi. Therefore, since the centre of A(F 13) is trivial, l’ is constant on

F 13 n ôK. This completes the proof of the first statement of the theorem.
If f belongs to the essential ideal of A(k) then f is in the centre of

A(K), and hence belongs to A(K) by the above argument. Therefore the
essential ideals of A(K) and A(K) coincide. Since K and K are Bauer
simplexes if and only if their essential ideals coincide with A(K) and A(K)
respectively, the final statement is evident.

COROLLARY (4): If K is the state space of a unital C*-algebra A, then
the Bishop decomposition for K de termines the centre of d.

PROOF: A(K) can be identified with d h, the set of hermitian elements
of A, and K satisfies Stormer’s axiom and admits sufficiently many inner
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automorphisms. The centre of A(K) is naturally identifiable with the
hermitian elements in the centre of A, and hence the result follows. (For
references see [1].)
When K is the state space of .91 the closed split faces of K are the

invariant faces, and they comprise the annihilators in K of the closed
two-sided ideals of A. Using these facts it is not difficult to see that the
Silov decomposition {F03B1} for K consists of the annihilators of the closed
two-sided ideals {I03B1} in A which are generated by the maximal ideals of
the centre of A. The Bishop decomposition {F03B2} for K corresponds to
the family {I03B2} of closed two-sided ideals in,.ç/ which are minimal subject
to the property that A/I03B2 has trivial centre.

In general we have been unable to decide whether the Bishop de-
composition determines A. This is, of course, so if aK is closed and it is
also true if .91 is a weakly central algebra.
For an arbitrary compact convex set K we say that A(K) is weakly

central if J1 = J2 whenever J1 and J2 are maximal near-lattice ideals in
A(K) such that J1 n Z = J2 n Z, where Z denotes the centre of A(K)
(cf. [5]).

THEOREM (5): If A(K) is weakly central then the Bishop and Silov
decompositions for K coincide. In particular, the Bishop decomposition
de termines A(K).

PROOF : Let Fa be a face in the Silov decomposition for K and suppose
that the centre of A(Fa) is non-trivial. Then there exist non-empty
disjoint closed split faces G and H of Fa and hence, by Zorn’s lemma,
there exist disjoint minimal split faces G 1 and H 1 of K contained in Fa .
But then I = (G1) and J = (H1) are maximal near-lattice ideals in
A(K) with I n Z = (Fa)1 n Z = J n Z, since the functions in Z are

constant on Fa . Therefore we obtain I = J and G 1 = H1, and this contra-
diction shows that A(Fa) has trivial centre. Since the Bishop decomposi-
tion is at least as fine as the Silov decomposition the two decompositions
must coincide.

COROLLARY (6): Let .91 be a weakly central unital C*-algebra, for
example a W*-algebra, with state space K and Bishop decomposition {I}.
Then a function f in CR(ÎK) is the restriction to îK of an hermitian
element of .91 if and only if, for each f3, f coincides on It n aK with an
hermitian element of WIIP -

The result of Corollary 6 can also be deduced from the results of
Vesterstr~m [16].
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The Bishop decomposition for K will determine A if it distinguishes
-Çih amongst the Banach subspaces of CR(êK). If some subspace L of
CR(ôK) such that A(K)IAK g L is identifiable with P4h for some unital
C*-algebra P4 containing .91 as a subalgebra, then A separates the points
of the pure state space aK of £3 so that A = B by Glimm’s Stone-
Weierstrass theorem [11]. In this sense the Bishop decomposition for K
always distinguishes A amongst C*-algebras.

4

Let A be a function algebra on a compact Hausdorff space X, let S be
the state space of A and let K = co (S ~ - iS) with the relative w*-
topology. It was shown [8] that the Bishop decomposition for K corre-
sponds to Bishop’s decomposition of X into maximal sets of antisymmetry
for A [4], and hence the decomposition determines A(K); in fact the
Bishop decomposition for K consists of the sets co (Eo w - iEp) together
with Xy and - ixy, where {x03B3, Epl are the maximal sets of antisymmetry
in X for A (the Ep containing more than one point), and so the Bishop
decomposition for K covers X and aK.
The map 0 : A - A(K), where 0 fiz) = re f (z) for f E A, z E K, is a

real-linear homeomorphism (cf. [3]). Using this map, we see that

re A = {re f : f ~ A} and A(K)|S are isometrically order isomorphic
(cf. [6]).
We now use these facts to give a simple geometrical proof of the

Hoffman-Wermer theorem [12].

THEOREM (7): (Hoffman-Wermer) If A is a function algebra on X such
that re A is uniformly closed, then A = Cc(X).

PROOF : We need to show that the Bishop decomposition for K consists
of singletons. Suppose that Ko = co (S, u - iSo) belongs to the Bi’shop
decomposition for K, where So is a closed split face of S. Then A|(S0 n X)
is a function algebra on So n X with state space So. Since re A is uniformly
closed we have A(K)|S = A(S) and hence

Therefore lin So is w*-closed in lin Ko = A(Ko)* (cf. [1,11.5]) where ’lin’
denotes real-linear hull. Since A(Ko) is antisymmetric (S0) is one-

dimensional in A(Ko), so that lin So has codimension one in lin Ko. If
- iSo has two distinct extreme points xl and x2 they are both split faces
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of Ko, and so x1 and co (SO U x2) are disjoint closed split faces of Ko.
Hence lin x1 and lin (80 U x2) intersect only at 0, and this contradiction
shows that So is a singleton. But then Ko cannot be antisymmetric, and
the theorem is proved.
A result of Fakhoury [9] and Nagel [13] states that if K is a simplex

then the centre of A(K) is the largest closed sublattice of CR(AK) which is
contained in A(K)laK. (See also [15] for the connections with facial
topologies of êK.) If A is a non-trivial function algebra and K is the
associated set defined above we will show that a largest closed sublattice
of CR(ÊK) contained in A(K)IÊK always exists, but is never equal to the
centre.

THEOREM (8): If A is a function algebra on X and if A1 = A n CR(X)
then 03B8(A1 + iA1)loK is the largest sublattice of CR(AK) which is contained
in A(K)IêK. This space coincides with the restriction of the centre of A(K)
if and only if A = Cc(X).

PROOF : Let L be a maximal sublattice of CR(ôK) which is contained in
A(K)loK, and let f = 8(u+iv)EL with ~f~ ~ 1. Since L is a closed

subalgebra of CR(aK) containing the constants, the function

cp(f) = 03B8(~(u) + i~(v))

belongs to L for every continuous real-valued function cp on [-1, 1].
It follows that ~(u)~re A, and a result of Arenson [2] gives u~A1.
Similarly, we have v E A so that L is contained in, and hence equal to,
the sublattice 8(A 1 + iA1)loK.

It was shown [7] that the centre Z of A(K) consists of the functions
0(u + iv), where u, v E A, and (u - v) belongs to the essential ideal I of A.
The function 0(1) belongs to L, but it does not belong to Z unless 1 e I,
that is A = Cc(X).
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