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Introduction

One striking difference between divisors and divisorial cycles appears
when they are specialized in a flat family of closed subschemes. On a
geometrically normal variety, an effective divisor remains a divisor
because of the Ramanujam-Samuel theorem (EGA IV4, 21.14.1); this
remarkable property is equivalent to the completeness theorem for the
Picard scheme (cf. [1]) if, in addition, the variety is projective. By contrast,
a positive divisorial cycle (not surprisingly) can acquire embedded
components and so cease to be a divisorial cycle. Our object is to study
an example in detail.

This behavior of divisorial cycles is one reason to feel that divisor-like
subschemes should be allowed embedded components located in the

singular locus. Here are two other reasons. Let S be a locally noetherian
scheme and f : X ~ S a flat, projective morphism with geometrically
normal fibers. Then, the flat, closed subschemes of X/S that are divisors
on the smooth locus are parametrized by an open and closed subscheme
of the Hilbert scheme of X/S ([1], (17)). Moreover, those of them that are
linearly equivalent in the sense that their ideals are isomorphic locally
over S are parametrized by a bundle of projective spaces P(H) with H
a coherent (9s-Module ([1], (17)).
The example below involves the theory of cones. EGA II, 8 contains

one development of the theory; we found another. Ours seems more
concise, less technical and easier to comprehend, and it includes some
useful results, which might well have appeared in EGA II. Moreover,
our development treats the theory of cones as a special case of the theory
of joins. We plan to present it elsewhere. So, the references to the theory of
cones are to our development (these references begin with a letter, e.g.,
(B7)) and, whenever possible, to EGA II, 8.
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Much of what is done with a smooth plane cubic curve works for any
smooth curve; however, there seems to be little additional value and
to be some loss in simplicity of notation in doing the general case.

Effective divisors are considered as closed subschemes with invertible

ideals (EGA IV4, 21.2.12), and positive divisorial cycles on normal
schemes are considered as closed subschemes with pure codimension
one without embedded components (cf. EGA IV4, 21.7.2).

1. The example

Let k be an algebraically closed field, Y a smooth plane cubic curve,
and F(To, Tl, T2) a homogeneous polynomial defining Y in p2. Let X
denote the cone over Y in P’ with vertex v = (0, 0, 0, 1); that is, X is the
surface in P’ defined by F. Then (X - v) is nonsingular because the partial
derivatives, éF/é7§, for 0 ~ i ~ 2 do not vanish simultaneously on X
except at v. Furthermore, X is normal by Serre’s criterion (EGA IV2, 5.8.6)
for it is Cohen-Macaulay because it is cut out by one equation, F = 0,
and it is regular in codimension one because (X - v) is regular.

Fix a line L in P2k, and let yl , y2 , and Y3 denote the three (not necessarily
distinct) points of intersection of Y and L. For each closed point y of Y,
the cone e(y) is obviously equal to the (reduced) line through y and v.

For each closed point y of Y, let Dy denote the following positive
divisorial cycle on X:
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Then, Dy3 is a divisor, for it is the intersection with X of the plane spanned
by L and v. By contrast, Dy, for y =1= y3, is not a divisor (see Section 2). Con-
sequently, the Dy are not isomorphic to the closed fibers of a flat family of
subschemes of X parametrized by Y; for, if they were, then almost all
of them would be divisors (cf. [6], Lemma, p. 108).

In Section 3 we construct a positive divisorial cycle Z on X x Y such
that Z is flat and proper over Y and such that, for each closed point y
of Y, the fiber Z(y) is, off v, equal to Dy. In Section 4, we show that the
Euler characteristic x(Iyy) of the ideal Iy of Dy is equal to 0 for y =1= y3 and to
1 for y = y3.

Let y be a closed point of Y. Since Dy is defined as the scheme-theoretic
closure of its three maximal points (EGA IV4, 21.7.1), it is clearly equal
to the scheme-theoretic closure of Dyl(X - v). Hence, since Z(y) is closed
and contains Dy|(X - v), it also contains Dy. So, there is an exact sequence,

where I(Z(y)) denotes the ideal of Z(y) and N is a suitable coherent
(9,-Module. Since Z has no embedded components, its generic fiber Z(~)
obviously has no embedded components. Consequently, since Z/Y is
flat and proper, Z(y) has no embedded components for almost all points
y of Y (EGA IV 3 , 12.2.1). Hence, Z(y) is everywhere equal to Dy for
almost all y. Therefore, the Euler characteristic x(I(Z(y))) of I(Z(y)),
which is independent of y (EGA III2, 7.9.4), is equal to 0 for every y.
Consequently, the Euler characteristic x(N) is equal to 0 for y F Y3 and
to 1 for y = y3. However, N is equal to 0 off v because Z(y) and Dy are
equal off v. Therefore, N is equal to 0 everywhere for y F y3, but N is
nonzero at v for y = y3. Hence, Z(y) is, everywhere, equal to Dy for
y F y3, but Z(y3) has an embedded component at v.

In short, Z(y), for y F Y3 is a divisorial cycle that acquires an embedded
component under a flat specialization as y specializes to y3.

Set

and form a commutative diagram (B7.1),
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where pi and p2 denote the projections, where p denotes the structure
map, where b denotes the conjunctive transformation, p1  i, and where i
denotes (B7) the conjunctive embedding, i = Proj (03B1#Y[t]), where

03B1#Y : i7y - Sym (OY(1)) is the Serre map of the graded coordinate algebra,
i7 = k[T]/F, of Y Let e : Y ~ P denote the fundamental embedding (B7);
it is a section of p defined by the projection (OY(1) (B OY) ~ (9y. Let E
denote the exceptional locus ; it is the scheme-theoretic image of e. Let
r : (X - v) - Y denote the fundamental retraction (B4 or EGA II, 8.3.5.1);
it is Proj (a) where a : i7 - Q[t] denotes the inclusion.

Let y be a closed point of Y Because the fundamental retraction is
compatible with linear embedding (B9, (iii, b) or EGA II, 8.5.4), there is
an equality of divisorial cycles,

Consider the following divisor on Y:

A fundamental retraction is smooth (C2 or cf. EGA II, 8.3.5.3), so flat.
Hence r-1 induces a homomorphism from the group of divisors on Y to
the group of divisors on (X - v) by .(EGA IV4, 21.4.5, (i) and 21.4.2).
Hence, relation (2.1) yields a relation,

Consider the following subscheme of P:

Since p is flat, Dy is a divisor (EGA IV4, 21.4, 5, (i)). By (C1, (ii) or EGA II,
8.6.2), b carries (P - E) into (X - v) and the composition, r(b|(P-E)),
is equal to the restriction, p|(P - E) ; hence, (2.2) and (2.3) yield the relation,

Assume Dy is a divisor. Then, b-1(Dy) is also a divisor (C5, (iii) or
EGA IV4, 21.4.5, (iii) as P is integral, X is irreducible and b is dominating).
Now, Dy is a divisor (noted after (2.3)), and E is a divisor (C3, (i) or EGA
II, 8.7.7 and 8.1.8) because it is the exceptional locus. Hence, since P
is normal, relation (2.4) implies there is a relation,
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for some integer m (EGA IV4, 21.6.9, (i)).
Since e is a section of p, there is a relation,

By (C3.2 or EGA II, 8.7.7 and 8.1.8)), there is an isomorphism,

Therefore, (2.5) yields an isomorphism,

By (Cl, (i) or EGA II, 8.7.1), the following diàgram is commutative (in
fact cartesian) :

where the left-hand map is the structure map and the bottom map is the

vertex section; so, there is an isomorphism,

Combining (2.8) with (2.9) yields an isomorphism,

Since Y is a cubic curve, deg (c1(OY(m)) is equal to 3 m by Bézout’s theorem ;
obviously, deg (c1(OY(dy))) is equal to 3. Hence, m is equal to 1.

By Serre’s explicit computation (EGA III1, 2.1.12, (i)), the linear system
of line sections of Y is complete; that is, the canonical map,

is surjective. Therefore, dy is obtained as the intersection of a line in P2k
with Y. This line must be L because, if y, and Y2 are distinct points,
then L is the only line through them both and, if they are the same point,
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then L is the only line through this point and tangent to Y there. Con-
sequently, y is equal to y3 . Thus, for y ~ y3, the cycle Dy is not a divisor.

3. Construction of the family Z

Since X and Y are normal, X x Y is also normal (EGA IV2, 6.14.3)
because k is algebraically closed. For each closed point y of Y, the cone
Û(y) is clearly integral; hence, Û(y) x Y is also integral (EGA IV2, 4.6.5, (ii))
because k is algebraically closed. Moreover, P is integral because it is a
projective bundle over Y Clearly Û(y) x Y and i(P) have codimension
one in X x Y So, we may define Z as the following positive divisorial
cycle on X x Y:

Obviously, each component of Z intersects the generic fiber X(r¡) of
X x Y/Y. Hence, Z is equal to the scheme-theoretic closure of its generic
fiber Z(q) in X x Y because Z is a divisorial cycle. So, by (EGA IV2, 2.8.5),
Z is flat over Y It is obviously proper over Y

Let y be a closed point of Y. We are going to establish a canonical
isomorphism,

Obviously, there is a relation,

Now, the conjunctive embedding, i : P(y) ~ e(y) x y is an isomorphism
(B8, (ii)). So, since i is compatible with linear embedding (B9, (iv)), there
is a relation,

The scheme (X - v) x Y is nonsingular (EGA IV2, 6.8.5, (ii)) because
both factors are nonsingular and k is algebraically closed; so, (X - v) x Y
is locally factorial (EGA IV4, 21.11.1). Hence, the divisorial cycles,
e(yi) x Y for i = 1, 2 and i(P), are divisors on (X - v) x Y (EGA IV4,
21.6.9, (ii)). Since each is obviously flat over Y, they are relative effective
divisors (EGA IV4, 21.15.3.3). Consequently, on (X - v) x Y, formation of
their sum commutes with base change (EGA IV4, 21.15.9). Therefore,
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(3.2) and (3.3) imply (3.1) by additivity. (The key fact is that the components
of Z are divisors on (X - v) x Y; they are not divisors at v  y3, and,
as noted at the end of Section 1, the fiber Z(Y3) is not equal to Dy3.)

4. Computation of the Euler characteristics

Keep the notation of Sections 1 and 2. We first verify that the co-
morphism of b is an isomorphism,

Since X is integral (Section 1) and b : P ~ X is birational (C5, (iv) or cf.
EGA II, 8.6.2), P and X have the same function field; denote it by K. Let
U be an affine open subset of X. Then, there are natural inclusions,

Since P is projective over k and since X is separated over k, the morphism
b is projective (EGA II, 5.5.5, (v)). Therefore, T(b-1(U), OP) is a finitely
generated T(U, (9x)-module by Serre’s theorem (EGA III 1, 2.2.1, (i)).
Hence, since X is normal, the first inclusion in (4.2) is an equality. Thus,
the comorphism of b is an isomorphism.
We next establish a canonical isomorphism,

where 7y is the ideal of Dy. By (2.4), the two closed subschemes, b-1(Dy)
and D’y, of P coincide on (P - E). Obviously, no component of the
divisorial cycle D’y lies entirely in E; so, Dy is equal to the scheme-theoretic
closure of its restriction to (P - E). Hence, Dy is a subscheme of b -1 (Dy).
Therefore, b induces a morphism b’ from Dy to Dy. Consider the commu-
tative diagram with exact rows,

where the two right-hand vertical maps are the comorphisms. The center
vertical map is the isomorphism (4.1). The right-hand vertical map is an
isomorphism on (X - v) because b carries (P - E) isomorphically onto
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(X - v) by (Cl, (ii) or EGA II, 8.6.2) and because b -1 (Dy) and Dy coincide
on (P - E) by (2.4); hence it is injective everywhere because its kernel
can have no associated point since the associated points of (9D, are all
(x - v). Therefore, by the five lemma, the induced left-hand vertical

map in (4.4) is an isomorphism, as desired.
Let m be an integer, and set

Consider the exact sequence,

obtained by tensoring the canonical exact sequence,

with the invertible (9x-Module Jm . It yields an exact sequence,

for each j ~ 0.
Let M be an OP-Module. Since b carries (P - E) isomorphically onto

(X - v) (Cl, (ii) or EGA II, 8.6.2), it is clear from the construction of

Rjb* M as a derived functor that it is concentrated at v for j &#x3E; 0. Therefore,
there is a relation,

For every j ~ 0 on the other hand, Hj(b-1(U), M|E) is equal to Hj(E, MIE)
for each open set U containing v ([5], II, 4.9.1(a)), and HJ(b-1(U), MIE)
is obviously equal to zero for each open set U not containing v. Hence,
since Rib,(MIE) is equal to the sheaf associated to the presheaf,
U H Hj(b-1(U), M|E), on X, its stalk at v is equal to Hj(E, M|E). Therefore
we have the following formula and statement :

for every

for every

Since E is a curve, Hj(E, MIE) is equal to zero for j ~ 2 ([5], II, 4.15.2);
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so, (4.8) yields the formula,

The invertible sheaf OP(-E) is relatively ample for b, (C3, (iii) or
EGA 8.7.7 and 8.1.7) because the inverse of an exceptional divisor is.

So there is a formula,

by Serre’s theorem (EGA III1, 2.2.1, (ii)). Therefore, by induction on m,
starting with m  0, using the exactness of (4.5), and applying (4.9) with
Jm for M, we obtain the formula,

In particular, since Jo is equal to I’y, there is a formula,

Consider the Leray spectral sequence (GD IV, 2.10),

By (4.12) and by (4.6), the only nonzero terms on the left occur for j = 0
or for j = 1 and i = 0. So, by (EGA OIII, 11.10.3), there is a formula,

Thus, since b*(I’y) is isomorphic to Iy (4.3), there is a formula,

In general, let S be a scheme, and let M and N be two locally free
(9s-Modules with a finite rank. Then, using Serre’s explicit calculation
(EGA III1, 2.1.12) and an appropriate Leray spectral sequence, it is

easy to obtain an isomorphism,

for each integer n, where q : P(M) ~ S denotes the structure morphism.
Applying (2.3) and (4.14) with Y for S, with (OY(1) E8 (9y) for M, and with
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OY(-dy) for N yields an isomorphism,

for each integer n. Therefore, there is a formula,

Let D be any divisor on Y Then Riemann’s theorem (GD VIII, 1.4)
asserts the formula,

For a plane curve C with degree n, there are formulas,

Since Y has degree 3, we therefore have the formula,

Combining the formulas (4.15) and (4.16) with - dy for D yields the
formula,

Thus, to compute x(I y), it remains in view of (4.13) to compute
ho(X, R1b*(I’y)).
By (2.6) and (2.7), there is an isomorphism,

So, the section e induces an isomorphism,

For any divisor D on Y, there is a formula,

by duality (GD I, 1.3) because the dualizing sheaf is trivial by (GD 1, 2.4
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with Y for D and 1, 3.1 with 2 for n). Moreover, h°(Y, OY(D)) is obviously
equal to zero if the inequality deg (D)  0 holds. Since, for each m,
the degree of c1((Y(-dy)(-m)) is equal to - 3m - 3, we therefore have
the formulas,

In view of (4.21), (4.18), and (4.8), there is a formula,

Therefore, since R1p*(Jm) is equal to zero for m « 0 by (4.10), the exactness
of (4.5) with j = 0 yields the formula,

by induction on m.
Since R2b*(J - 2) is equal to zero (4.11), formula (4.22) and the exactness

of (4.5) imply that R1b*(J-1) is isomorphic to R1b*(J -liE). Therefore,
by (4.18) and (4.7), there is an isomorphism,

In general, let M be an invertible sheaf on a complete, integral curve
C over k, and s, a nonzero global section of M. It is evident that, if s
has the value zero at some point, then the degree of cl(M) is strictly
positive, and that, if s has no zeroes, then it defines an isomorphism from
C onto M. Hence, if c1(M) has degree zero, then either M is nontrivial
and H°(C, M) is equal to 0, or M is isomorphicJto (9c and H°(C, M)
is equal to k (the k-vector space H°(C, (9c) is an integral domain with a
finite k-dimension, so equal to k).

Obviously, c1(Y(-dy)(1)) has degree zero and is isomorphic to (9y for
y = y3. Recall from the end of Section 2 that, if (9y(- dy)(1) is isomorphic
to Y (equivalently, if (9y(dy) is isomorphic to Y(1)), then y is equal to y3.
Hence, by the general observations above, H(Y, Y( - dy)(1)) is equal to
0 for y =1= Y3 and to k for y = y3. Therefore, by Riemann’s theorem (4.16),
clearly hl(Y, Y( - dy)(1)) is equal to 0 for y =1= Y3 and to 1 for y = y3.
Consequently, by (4.23), there are formulas,
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By (4.20), there is a formula,

So, by Riemann’s Theorem (4.16), there is a formula,

Hence, (4.18) and (4.7) yield the formula,

Moreover, (4.25), (4.18), and (4.8) yield the formula,

So, since R2b*(J -1) is equal to zero by (4.11), the exact sequence (4.5)
with j = 0 and m = 0 becomes the exact sequence,

Since H1(X, R1b*(J-1)) is equal to 0 by (4.6), there is an exact sequence,

Hence, since Jo is equal to lÿ, formulas (4.24) and (4.26) yield the formulas,

Finally, combining (4.28) and (4.29) with (4.17) and (4.13) yields the
formulas,
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