An isomorphic characterization of the Schmidt class
Compositio Mathematica, Tome 30 (1975) no. 3, pp. 293-297.
@article{CM_1975__30_3_293_0,
     author = {Lewis, D. R.},
     title = {An isomorphic characterization of the {Schmidt} class},
     journal = {Compositio Mathematica},
     pages = {293--297},
     publisher = {Noordhoff International Publishing},
     volume = {30},
     number = {3},
     year = {1975},
     mrnumber = {374968},
     zbl = {0321.46017},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1975__30_3_293_0/}
}
TY  - JOUR
AU  - Lewis, D. R.
TI  - An isomorphic characterization of the Schmidt class
JO  - Compositio Mathematica
PY  - 1975
SP  - 293
EP  - 297
VL  - 30
IS  - 3
PB  - Noordhoff International Publishing
UR  - http://archive.numdam.org/item/CM_1975__30_3_293_0/
LA  - en
ID  - CM_1975__30_3_293_0
ER  - 
%0 Journal Article
%A Lewis, D. R.
%T An isomorphic characterization of the Schmidt class
%J Compositio Mathematica
%D 1975
%P 293-297
%V 30
%N 3
%I Noordhoff International Publishing
%U http://archive.numdam.org/item/CM_1975__30_3_293_0/
%G en
%F CM_1975__30_3_293_0
Lewis, D. R. An isomorphic characterization of the Schmidt class. Compositio Mathematica, Tome 30 (1975) no. 3, pp. 293-297. http://archive.numdam.org/item/CM_1975__30_3_293_0/

[1] Y. Gordon: On p-absolutely summing constants of Banach spaces. Israeal J. Math. 7 (1969) 151-162. | MR | Zbl

[2] Y. Gordon and D.R. Lewis: Absolutely summing operators and local unconditional structures. Acta Math. (to appear). | MR | Zbl

[3] M.I. Kadec and A. Oelczynski: Bases, lacunary sequences and complemented subspaces in the space Lp. Studia Math. 21 (1962) 161-176. | EuDML | Zbl

[4] D.R. Lewis: A relation between diagonal and unconditional basis constants (to appear | MR | Zbl

[5] Ch. A. Mccarthy: Cp. Israel J. Math. 5 (1967) 249-271. | MR | Zbl

[6] A. Pletsch: Theorie der operatorenideale. Jena, 1972. | Zbl

[7] R. Schatten: Norm ideals of completely continuous operators. Berlin -Göttingen-Heidelberg, 1960. | MR | Zbl