@article{CM_1975__30_3_317_0, author = {Green, Mark L.}, title = {Some examples and counter-examples in value distribution theory for several variables}, journal = {Compositio Mathematica}, pages = {317--322}, publisher = {Noordhoff International Publishing}, volume = {30}, number = {3}, year = {1975}, mrnumber = {374498}, zbl = {0307.32022}, language = {en}, url = {http://archive.numdam.org/item/CM_1975__30_3_317_0/} }
TY - JOUR AU - Green, Mark L. TI - Some examples and counter-examples in value distribution theory for several variables JO - Compositio Mathematica PY - 1975 SP - 317 EP - 322 VL - 30 IS - 3 PB - Noordhoff International Publishing UR - http://archive.numdam.org/item/CM_1975__30_3_317_0/ LA - en ID - CM_1975__30_3_317_0 ER -
%0 Journal Article %A Green, Mark L. %T Some examples and counter-examples in value distribution theory for several variables %J Compositio Mathematica %D 1975 %P 317-322 %V 30 %N 3 %I Noordhoff International Publishing %U http://archive.numdam.org/item/CM_1975__30_3_317_0/ %G en %F CM_1975__30_3_317_0
Green, Mark L. Some examples and counter-examples in value distribution theory for several variables. Compositio Mathematica, Tome 30 (1975) no. 3, pp. 317-322. http://archive.numdam.org/item/CM_1975__30_3_317_0/
[1] The theory of meromorphic curves. Acta Soc. Sci. Fenn. (N.S.) 3 (1941). | JFM | MR | Zbl
:[2] A Picard theorem for P2 - D. Proc. of the A.M.S. Summer Inst. in Diff. Geom., Stanford, 1973.
:[3] A defect relation for equidimensional holomorphic mappings between algebraic varieties. Ann. of Math. 95, No. 3 (May 1972) 557-584. | MR | Zbl
and :[4] Holomorphic maps into complex projective space omitting hyperplanes, Trans. A. M. S. 169 (1972) 89-103. | MR | Zbl
:[5] Some Picard theorems for holomorphic maps to algebraic varieties. Am. J. Math. 97 (1975) 43-75. | MR | Zbl
:[6] On the functional equation f2 = e2ϕ1 + e2ϕ2 + e2ϕ3 and a new Pi card theorem. Trans. A.M.S. 195 (1974) 223-230. | Zbl
:[7] The complement of the dual of a plane curve and some new hyperbolic manifolds. p. 119-132, Value-Distribution Theory. Part A, Marcel Dekker (N. Y. 1974). | MR | Zbl
:[8] Nevanlinna defect relations for singular divisors. (to appear). | MR | Zbl
: