@article{CM_1975__31_2_219_0, author = {Casselman, William and Osborne, M. Scott}, title = {The $n$-cohomology of representations with an infinitesimal character}, journal = {Compositio Mathematica}, pages = {219--227}, publisher = {Noordhoff International Publishing}, volume = {31}, number = {2}, year = {1975}, mrnumber = {396704}, zbl = {0343.17006}, language = {en}, url = {http://archive.numdam.org/item/CM_1975__31_2_219_0/} }
TY - JOUR AU - Casselman, William AU - Osborne, M. Scott TI - The $n$-cohomology of representations with an infinitesimal character JO - Compositio Mathematica PY - 1975 SP - 219 EP - 227 VL - 31 IS - 2 PB - Noordhoff International Publishing UR - http://archive.numdam.org/item/CM_1975__31_2_219_0/ LA - en ID - CM_1975__31_2_219_0 ER -
%0 Journal Article %A Casselman, William %A Osborne, M. Scott %T The $n$-cohomology of representations with an infinitesimal character %J Compositio Mathematica %D 1975 %P 219-227 %V 31 %N 2 %I Noordhoff International Publishing %U http://archive.numdam.org/item/CM_1975__31_2_219_0/ %G en %F CM_1975__31_2_219_0
Casselman, William; Osborne, M. Scott. The $n$-cohomology of representations with an infinitesimal character. Compositio Mathematica, Volume 31 (1975) no. 2, pp. 219-227. http://archive.numdam.org/item/CM_1975__31_2_219_0/
[1] Une nouvelle demonstration d'un théorème de R. Bott et B. Kostant. Bull. Math. Soc. France 95 (1967) 205-242. | Numdam | MR | Zbl
:[2] Remarks on 'Lie algebra cohomology and the generalized Borel-Weil theorem' by B. Kostant. Ann. of Math. 74 (1961) 388-390. | MR | Zbl
:[3] Some general results on admissible representations of p-adic groups. (to appear)
:[4] Introduction to Lie algebras and representation theory. New York: Springer, 1972. | MR | Zbl
:[5] Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. 74 (1961) 329-387. | MR | Zbl
:[6] Lie group representations on polynomial rings. Amer. J. of Math. 85 (1963) 327-404. | MR | Zbl
:[7] Yale University Ph.D. thesis. (1973).
:[8] Harmonic analysis on semi-simple groups I. New York, Springer, 1972. | Zbl
: