Some finiteness properties of the fundamental group of a smooth variety
Compositio Mathematica, Volume 31 (1975) no. 3, pp. 303-308.
@article{CM_1975__31_3_303_0,
     author = {Anderson, Michael P.},
     title = {Some finiteness properties of the fundamental group of a smooth variety},
     journal = {Compositio Mathematica},
     pages = {303--308},
     publisher = {Noordhoff International Publishing},
     volume = {31},
     number = {3},
     year = {1975},
     mrnumber = {399097},
     zbl = {0328.14008},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1975__31_3_303_0/}
}
TY  - JOUR
AU  - Anderson, Michael P.
TI  - Some finiteness properties of the fundamental group of a smooth variety
JO  - Compositio Mathematica
PY  - 1975
SP  - 303
EP  - 308
VL  - 31
IS  - 3
PB  - Noordhoff International Publishing
UR  - http://archive.numdam.org/item/CM_1975__31_3_303_0/
LA  - en
ID  - CM_1975__31_3_303_0
ER  - 
%0 Journal Article
%A Anderson, Michael P.
%T Some finiteness properties of the fundamental group of a smooth variety
%J Compositio Mathematica
%D 1975
%P 303-308
%V 31
%N 3
%I Noordhoff International Publishing
%U http://archive.numdam.org/item/CM_1975__31_3_303_0/
%G en
%F CM_1975__31_3_303_0
Anderson, Michael P. Some finiteness properties of the fundamental group of a smooth variety. Compositio Mathematica, Volume 31 (1975) no. 3, pp. 303-308. http://archive.numdam.org/item/CM_1975__31_3_303_0/

[1] S. Abhyankar: Resolution of Singularities of Embedded Algebraic Surfaces. Academic Press, New York, 1966. | MR | Zbl

[2] Michae L.P. Anderson: Profinite Groups and the Topological Invariants of Algebraic Varieties. Princeton Ph.D. thesis, 1974.

[3] Michael P. Anderson: EXACTNESS PROPERTIES OF PROFINITE COMPLETION FUNCTORS. Topology 13 (1974) 229-239. | MR | Zbl

[4] M. Artin, A. Grothendieck, J.L. Verdier: Theorie des Topos et Cohomologie Etale des Schemas. Lecture Notes in Mathematics 305 (1973). | Zbl

[5] Wout De Bruin: Une forme algebrique du theoreme de Zariski pour Π1. C. R. Acad. Sci. Paris Ser. A-B 272 (1971) A769-A771. | Zbl

[6] E.M. Friedlander: The Etale Homotopy Theory of a Geometric Fibration. Manuscripta Mathematica 10 (1973) 209-244. | EuDML | MR | Zbl

[7] A. Grothendieck et al.: Revetements Etales et Groupe Fondamental. Lecture Notes in Mathematics 224 (1971). | MR | Zbl

[8] A. Grothendieck et al.: Groupes de Monodromie en Geometrie Algebrique. Lecture Notes in Mathematics 288 (1972). | Zbl

[9] Herbert Popp: Ein Satz vom Lefschetzschen Typ Uber die Fundamentalgruppe quasi-projectiver Schemata. Math. Z. 116 (1970) 143-152. | EuDML | MR | Zbl

[10] M. Raynaud: Theoreme de Lefschetz en Cohomologie des Faisceux coherents et en cohomologie etale. Ann. E. N. S. 4 (1974) 29-52. | Numdam | MR | Zbl