COMPOSITIO MATHEMATICA

BALWANT SINGH

A numerical criterion for the permissibility of a blowing-up

Compositio Mathematica, tome 33, nº 1 (1976), p. 15-28 <http://www.numdam.org/item?id=CM_1976__33_1_15_0>

© Foundation Compositio Mathematica, 1976, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 33, Fasc. 1, 1976, pag. 15–28 Noordhoff International Publishing Printed in the Netherlands

A NUMERICAL CRITERION FOR THE PERMISSIBILITY OF A BLOWING-UP

Balwant Singh

Introduction

Let \mathcal{O} be a noetherian local ring and p a proper ideal of \mathcal{O} . The concept of the permissibility of p in \mathcal{O} (more precisely, of Spec (\mathcal{O}/p) in Spec \mathcal{O} at the closed point) as a center for blowing-up was introduced by Hironaka in his paper [3] on the resolution of singularities. If the center of a blowing-up $\mathcal{O} \to \mathcal{O}'$ is permissible in \mathcal{O} then the singularity of \mathcal{O}' is no worse than that of \mathcal{O} . Here, as a measure of singularity, we may take either the characters v^* , τ^* defined by Hironaka in [3] in case \mathcal{O} is given as the quotient of a regular local ring, or the Hilbert functions of O and O'(See [1], [4], [6]). In this note we give a numerical criterion for the permissibility of a blowing-up, i.e. of its center (Theorem 1) and study the effect of an arbitrary blowing-up on the Hilbert function of a local ring (Theorems 2 and 3). As a corollary to Theorem 1, we get yet another criterion for the permissibility of a blowing-up (Corollary (1.4)). The criterion in Theorem 1 leads to the definition of a numerical function D_{p} such that p is permissible in \mathcal{O} if and only if $D_{p} = 0$. (See Remark 2.) A significance of this function D_n is that it appears explicitly in a comparison between the Hilbert functions of \mathcal{O} and \mathcal{O}' , where $\mathcal{O} \to \mathcal{O}'$ is a blowing-up of O with center p. (See Theorems 2 and 3.) In Remark 3 below we indicate how the criterion in Theorem 1 compares with a numerical criterion for normal flatness given by Bennett [1].

In order to state our results more precisely, we need some notation. By a *numerical function* H we mean a map $H: \mathbb{Z}^+ \to \mathbb{Z}^+$. If H is a numerical function, we get from H a sequence $\{H^{(r)}\}_{r\geq 0}$ of numerical functions by successive 'integration' as follows: $H^{(0)} = H$ and, for $r \geq 1$,

$$H^{(r)}(n) = \sum_{i=0}^{n} H^{(r-1)}(i).$$
15

If H_1, H_2 are numerical functions, then by $H_1 \ge H_2$ we shall always mean the total order inequality, i.e. $H_1(n) \ge H_2(n)$ for every $n \in \mathbb{Z}^+$.

Let \mathcal{O} be a noetherian local ring. For a *proper* ideal \mathfrak{p} of \mathcal{O} we define a numerical function H_n by

$$H_{\mathfrak{p}}(n) = \dim_{\mathfrak{O}/\mathfrak{m}} \mathfrak{p}^n / \mathfrak{m} \mathfrak{p}^n,$$

where m is the maximal ideal of \mathcal{O} . This gives us a sequence $\{H_{\mathfrak{p}}^{(r)}\}_{r\geq 0}$ of numerical functions. We write $H_{\mathcal{O}}^{(r)}$ for $H_{\mathfrak{m}}^{(r)}$, so that $\{H_{\mathcal{O}}^{(r)}\}_{r\geq 0}$ is the usual sequence of the Hilbert functions of \mathcal{O} .

We denote by dim \mathcal{O} the Krull dimension of \mathcal{O} and by emdim \mathcal{O} the embedding dimension of \mathcal{O} , i.e. emdim $\mathcal{O} = H_{\mathcal{O}}^{(0)}(1)$.

Recall that a proper ideal p of O is said to be *permissible* in O (as a center for a blowing-up) if the following two conditions are satisfied:

- (i) regularity: \mathcal{O}/\mathfrak{p} is regular
- (ii) normal flatness: Ø is normally flat along p, i.e. the graded Ø/p-algebra gr_p(Ø) = ⊕_{n≥0}pⁿ/pⁿ⁺¹ is Ø/p-flat.

THEOREM 1: Let \mathcal{O} be a noetherian local ring and \mathfrak{p} a proper ideal of \mathcal{O} . Let $d = \dim \mathcal{O}/\mathfrak{p}$ and $e = \operatorname{emdim} \mathcal{O}/\mathfrak{p}$. Then we have $H_{\mathcal{O}}^{(0)} \leq H_{\mathfrak{p}}^{(e)}$. Further, the following three conditions are equivalent:

(i) p is permissible in 𝒪
(ii) 𝒪/p is regular and H_𝔅⁽⁰⁾ = H_𝔅^(d)
(iii) H_𝔅⁽⁰⁾ = H_𝔅^(e).

We prove this theorem in $\S 1$.

REMARK 1: For the implication (i) \Rightarrow (ii), cf. [3, Chapter II, Proposition 1].

REMARK 2: For a proper ideal \mathfrak{p} of \mathcal{O} , let us define $D_{\mathfrak{p}} = H_{\mathfrak{p}}^{(e)} - H_{\mathcal{O}}^{(0)}$, where $e = \operatorname{emdim} \mathcal{O}$. Theorem 1 shows that $D_{\mathfrak{p}}$ is a numerical function, and \mathfrak{p} is permissible in \mathcal{O} if and only if $D_{\mathfrak{p}} = 0$. We may therefore call $D_{\mathfrak{p}}$ the *permissibility defect* of \mathfrak{p} . Another justification for the use of this term is provided by Theorem 2, which states, roughly, that if $\mathcal{O} \to \mathcal{O}'$ is a blowing-up of \mathcal{O} with center \mathfrak{p} , then $H_{\mathcal{O}}^{(0)} - H_{\mathcal{O}'}^{(\delta)} \geq -D_{\mathfrak{p}}$, where δ is the residue transcendence degree of \mathcal{O}' over \mathcal{O} . In the case when \mathfrak{p} is permissible in \mathcal{O} , the inequality $H_{\mathcal{O}}^{(0)} - H_{\mathcal{O}'}^{(\delta)} \geq 0$ is already known [6]. One can thus say that under a blowing-up the singularity of \mathcal{O} can become worse only to the extent that the blowing-up is non-permissible, this non-permissibility being measured by the numerical function $D_{\mathfrak{p}}$.

REMARK 3: Bennett has given a numerical criterion for the permissibility of p in \mathcal{O} in the case when \mathcal{O}/p is regular [1, Theorem (3) and 0(2.1.2)]. He has shown that if \mathcal{O}/p is regular of dimension d then p is permissible in \mathcal{O} if and only if $H_{\mathcal{O}}^{(0)} = H_{\mathcal{O}_{\mathfrak{p}}}^{(d)}$. Let us compare this criterion with the one given in Theorem 1 above. Suppose that \mathcal{O} is excellent. Then we have $H_{\mathcal{O}_{\mathfrak{p}}}^{(d)} \leq H_{\mathcal{O}}^{(0)}$, where $d = \dim \mathcal{O}/\mathfrak{p}$. (See [1, Theorem (2)] and [6, page 202].) In this case, therefore, the difference $D'_{\mathfrak{p}} = H_{\mathcal{O}}^{(0)} - H_{\mathcal{O}_{\mathfrak{p}}}^{(d)}$ is a numerical function, and p is permissible in \mathcal{O} if and only if $D'_{p} = 0$. However, the definition of this measure D'_{p} of the deviation of p from being permissible requires, in the first place, that p be a prime ideal. Even then it is apparently defined (i.e. is non-negative) only for \mathcal{O} excellent, it being not known whether the inequality $H_{\ell_p}^{(d)} \leq H_{\ell}^{(0)}$ holds for non-excellent \mathcal{O} . Moreover, in order that $D'_{p} = 0$ imply the permissibility of p in \mathcal{O} , we have to assume already that \mathcal{O}/p is regular. Finally, D'_{p} does not seem to intervene directly in a formula for the difference $H_{\emptyset}^{(0)} - H_{\emptyset'}^{(\delta)}$ as $D_{\mathfrak{p}}$ does. (Here $\mathscr{O} \to \mathscr{O}'$ is a blowing-up as in Remark 2.) It is interesting, however, to note that if \mathcal{O} is excellent and \mathcal{O}/p is regular of dimension d then we have

(*)
$$H_{\mathcal{O}_{\mathfrak{n}}}^{(d)} \leq H_{\mathcal{O}}^{(0)} \leq H_{\mathfrak{p}}^{(d)}$$

and one of these inequalities is an equality if and only if the other is. One may therefore ask: What is the relationship, in this case, between $D_{\mathfrak{p}} = H_{\mathfrak{p}}^{(d)} - H_{\mathfrak{o}}^{(0)}$ and $D'_{\mathfrak{p}} = H_{\mathfrak{o}}^{(0)} - H_{\mathfrak{o}_n}^{(d)}$?

REMARK 4: The inequalities (*) of Remark 3 yield another interesting criterion for the permissibility of p in O. (See Corollary (1.4) in § 1.)

REMARK 5: With the notation of Theorem 1, we do not, in general, have the inequality $H_{\mathcal{O}}^{(0)} \leq H_{\mathfrak{p}}^{(d)}$. Example: Let \mathcal{O} be a non-regular Cohen-Macaulay local ring of dimension 1 (e.g., $\mathcal{O} = k[[X, Y]]/(Y^2 - X^3)$, where k is a field). Choose any non-zero divisor x in the maximal ideal of \mathcal{O} , and let $\mathfrak{p} = \mathcal{O}x$. Then d = 0, $H_{\mathfrak{p}}^{(0)}(n) = 1$ for every n, but $H_{\mathcal{O}}^{(0)}(1) \geq 2$.

REMARK 6: With the notation of Theorem 1, the equality $H_{\mathcal{O}}^{(0)} = H_{\mathfrak{p}}^{(d)}$ alone does not imply that \mathfrak{p} is permissible in \mathcal{O} . Example: Let \mathcal{O} be a regular local ring of dimension 1. Let x be any non-zero element in the square of the maximal ideal of \mathcal{O} and let $\mathfrak{p} = x\mathcal{O}$.

We now proceed to state Theorems 2 and 3. Let $\mathcal{O} \to \mathcal{O}'$ be a blowing-up of \mathcal{O} with center a proper ideal \mathfrak{p} of \mathcal{O} . Let $e = \operatorname{emdim} \mathcal{O}/\mathfrak{p}$. Choose t_1, \ldots, t_e in the maximal ideal \mathfrak{m} of \mathcal{O} such that $\mathfrak{m} = \mathfrak{p} + \sum_{i=1}^{e} t_i \mathcal{O}$. Let

 $t_0 \in \mathfrak{p}$ be such that $\mathfrak{p}\mathcal{O}' = t_0\mathcal{O}'$. For such a choice of $t = (t_0, t_1, \dots, t_e)$ we define, for every $i, 0 \leq i \leq e$, a sequence $\{\mathfrak{a}_{t,i}(n)\}_{n \geq 0}$ of ideals of \mathcal{O}' as follows:

$$\mathfrak{a}_{t,i}(n) = \{ f \in \mathcal{O}' | t_i f \in \mathfrak{m}'^{n+1} + \sum_{j=0}^{i-1} t_j \mathcal{O}' \},\$$

where m' is the maximal ideal of \mathcal{O}' . Clearly, $a_{t,i}(n) \supset m'^n + \sum_{j=0}^{i-1} t_j \mathcal{O}'$ for every *i* and *n*. Let $L_{t,i}, 0 \leq i \leq e$, be the numerical functions defined by

$$L_{t,i}(n) = \operatorname{length}_{\mathcal{O}'} \mathfrak{a}_{t,i}(n) / (\mathfrak{m}'^n + \sum_{j=0}^{i-1} t_j \mathcal{O}').$$

THEOREM 2: Let \mathfrak{p} be a proper ideal of a noetherian local ring \mathcal{O} and let $e = \operatorname{emdim} \mathcal{O}/\mathfrak{p}$. Let $\mathcal{O} \to \mathcal{O}'$ be a blowing-up of \mathcal{O} with center \mathfrak{p} and let δ be the residue transcendence degree of \mathcal{O}' over \mathcal{O} . Then, for any choice of $t = (t_0, t_1, \ldots, t_e)$ as above, we have

$$H_{\mathscr{O}}^{(0)} - H_{\mathscr{O}'}^{(\delta)} \geq \sum_{i=0}^{e} L_{t,i}^{(i+\delta)} - D_{\mathfrak{p}} \geq -D_{\mathfrak{p}}.$$

In particular, if \mathfrak{p} is permissible in \mathcal{O} , then

$$H_{\mathscr{O}}^{(0)} - H_{\mathscr{O}'}^{(\delta)} \ge \sum_{i=0}^{e} L_{t,i}^{(i+\delta)} \ge 0.$$

In the case when $\mathcal{O} \to \mathcal{O}'$ is residually rational, we can give a more precise formula for the difference $H^{(0)}_{\mathcal{O}} - H^{(0)}_{\mathcal{O}'}$. As above, let $t_0 \in \mathfrak{p}$ be such that $\mathfrak{p}\mathcal{O}' = t_0\mathcal{O}'$. Then \mathcal{O}' is obtained as a localization of the subring $\{f/t_0^n | n \ge 0, f \in \mathfrak{p}^n\}$ of \mathcal{O}_{t_0} . We define a sequence $\{\mathfrak{b}_{t_0}(n)\}_{n\ge 0}$ of ideals of \mathcal{O} by

$$\mathfrak{b}_{t_0}(n) = \{ f \in \mathfrak{p}^n | f/t_0^n \in \mathfrak{m}^{n+1} + \mathfrak{m}\mathcal{O}' \},\$$

where $\mathfrak{m}, \mathfrak{m}'$ are the maximal ideals of $\mathcal{O}, \mathcal{O}'$, respectively. Clearly, $\mathfrak{b}_{t_0}(n) \supset \mathfrak{mp}^n$ for every *n*. Let L_{t_0} be the numerical function defined by

$$L_{t_0}(n) = \text{length}_{\mathcal{O}} \mathfrak{b}_{t_0}(n)/\mathfrak{mp}^n$$

THEOREM 3: Let the notation be as in Theorem 2. Assume, moreover, that $\mathcal{O} \to \mathcal{O}'$ is residually rational. Then for any choice of $t = (t_0, t_1, \ldots, t_e)$ as above, we have

18

Numerical criterion for the permissibility of a blowing-up

$$H_{\mathscr{O}}^{(0)} - H_{\mathscr{O}'}^{(0)} = L_{t_0}^{(e)} + \sum_{i=0}^{e} L_{t,i}^{(i)} - D_{\mathfrak{p}}.$$

In particular, if p is permissible in O, then

$$H_{\mathcal{O}}^{(0)} - H_{\mathcal{O}'}^{(0)} = L_{t_0}^{(e)} + \sum_{i=0}^{e} L_{t_i,i}^{(i)}$$

Theorems 2 and 3 are proved in § 2.

1. Proof of Theorem 1

(1.1) Let \mathcal{O} be a noetherian local ring with maximal ideal \mathfrak{m} . For any ideal \mathfrak{p} of \mathcal{O} we define

$$\mu(\mathfrak{p}) = \dim_{\mathfrak{O}/\mathfrak{m}} \mathfrak{p}/\mathfrak{m}\mathfrak{p},$$

so that $\mu(\mathfrak{p})$ is the cardinality of a minimal set of generators of \mathfrak{p} . Note that, if \mathfrak{p} is a proper ideal of \mathcal{O} , then $\mu(\mathfrak{p}^n) = H_{\mathfrak{p}}^{(0)}(n)$ for every n.

(1.2) LEMMA:

(1) Let \mathfrak{a}_i , $1 \leq i \leq r$, be ideals of \mathcal{O} such that $\mu(\sum_i \mathfrak{a}_i) = \sum_i \mu(\mathfrak{a}_i)$. If S_i is a minimal set of generators of \mathfrak{a}_i , then $\bigcup_i S_i$ is a minimal set of generators of $\sum_i \mathfrak{a}_i$. In particular, for every j, $1 \leq j \leq r$, we have

$$S_j \cap (\mathfrak{m}(\sum_i \mathfrak{a}_i) + \sum_{i \neq j} \mathfrak{a}_i) = \emptyset.$$

(2) Let $\mathfrak{p}, \mathfrak{q}$ be proper ideals of \mathcal{O} and let $\mathfrak{a} = \mathfrak{p} + \mathfrak{q}$. Let $e = \mu(\mathfrak{q})$. Then $H_{\mathfrak{a}}^{(0)} \leq H_{\mathfrak{p}}^{(e)}$.

(3) With the notation of (2), suppose that $H_{\mathfrak{a}}^{(0)} = H_{\mathfrak{p}}^{(e)}$. Then, for every $m, n \geq 0$, we have

(a)
$$\mu(q^n) = \binom{n+e-1}{e-1}$$

(b) $\mu(\mathfrak{p}^m\mathfrak{q}^n) = \mu(\mathfrak{p}^m)\mu(\mathfrak{q}^n)$

(c)
$$\mu(\mathfrak{a}^{n+1}) = \mu(\mathfrak{q}^{n+1}) + \mu(\mathfrak{a}^n\mathfrak{p}).$$

 P_{ROOF} : (1) is immediate. To prove (2) and (3), we have only to observe the following easily verified facts:

(i)
$$\mu(\mathfrak{a}^n) \leq \sum_{i=0}^n \mu(\mathfrak{p}^{n-i}\mathfrak{q}^i) \leq \sum_{i=0}^n \mu(\mathfrak{p}^{n-i})\mu(\mathfrak{q}^i).$$

19

[5]

(ii)
$$\mu(\mathfrak{q}^n) \leq \binom{n+e-1}{e-1}.$$

(iii) For any numerical function $H = H^{(0)}$ we have

$$H^{(e)}(n) = \sum_{i=0}^{n} {i+e-1 \choose e-1} H^{(0)}(n-i).$$

(1.3) LEMMA: (Bennett). Let \mathcal{O} be a noetherian local ring and \mathfrak{p} an ideal of \mathcal{O} such that \mathcal{O}/\mathfrak{p} is regular. Let $d = \dim \mathcal{O}/\mathfrak{p}$. Then \mathfrak{p} is permissible in \mathcal{O} if and only if $H_{\mathcal{O}}^{(0)} = H_{\mathcal{O}_n}^{(d)}$.

For a proof of this lemma, see [1, Theorem (3) and 0(2.1.2)].

Before coming to the proof of Theorem 1, we note the following corollary to Theorem 1:

(1.4) COROLLARY: Suppose \mathcal{O} is excellent ¹ and \mathcal{O}/\mathfrak{p} is regular. Then \mathfrak{p} is permissible in \mathcal{O} if and only if $\mu(\mathfrak{p}^n) = \mu(\mathfrak{p}^n \mathcal{O}_p)$ for every $n \ge 0$.

PROOF: As mentioned in Remark 3 of the Introduction, we have

$$H^{(d)}_{\mathcal{O}_{\mathfrak{p}}} \leq H^{(0)}_{\mathcal{O}} \leq H^{(d)}_{\mathfrak{p}}$$

(The second inequality follows from Theorem 1 and the first from [1, Theorem (2)] and [6, page 202].) By Theorem 1, $H_{\emptyset}^{(0)} = H_{\mathfrak{p}}^{(d)}$ if and only if \mathfrak{p} is permissible in \mathcal{O} . By Lemma (1.3), \mathfrak{p} is permissible in \mathcal{O} if and only if $H_{\emptyset_{\mathfrak{p}}}^{(d)} = H_{\emptyset}^{(0)}$. Therefore, \mathfrak{p} is permissible in \mathcal{O} if and only if $H_{\emptyset_{\mathfrak{p}}}^{(d)} = H_{\emptyset}^{(0)}$. Therefore, \mathfrak{p} is permissible in \mathcal{O} if and only if $H_{\emptyset_{\mathfrak{p}}}^{(d)} = H_{\emptyset}^{(d)}$. Now, clearly, $H_{\emptyset_{\mathfrak{p}}}^{(d)} = H_{\mathfrak{p}}^{(d)}$ if and only if $H_{\emptyset_{\mathfrak{p}}}^{(0)} = H_{\mathfrak{p}}^{(0)}$. This proves the corollary, since $\mu(\mathfrak{p}^n) = H_{\mathfrak{p}}^{(0)}(n)$ and $\mu(\mathfrak{p}^n \mathcal{O}_{\mathfrak{p}}) = H_{\emptyset_{\mathfrak{p}}}^{(0)}(n)$.

PROOF OF THEOREM 1: Let m be the maximal ideal of \mathcal{O} and let $k = \mathcal{O}/m$.

Since $e = \text{emdim } \mathcal{O}/\mathfrak{p}$, there exists an ideal \mathfrak{q} of \mathcal{O} such that $\mathfrak{m} = \mathfrak{p} + \mathfrak{q}$ and $\mu(\mathfrak{q}) = e$. Therefore, the inequality $H_{\mathcal{O}}^{(0)} \leq H_{\mathfrak{p}}^{(e)}$ follows from Lemma (1.2)(2).

20

¹ It was pointed out by W. Vogel that the proof of this corollary goes through also for non-excellent \mathcal{O} . For it follows, from Lemma 1 of [A. Ljungström, "An inequality between Hilbert functions of certain prime ideals one of which is immediately included in the other", Preprint, University of Stockholm, 1975] that $H_{\mathcal{O}}^{(4)} \leq H_{\mathcal{O}}^{(0)}$ for arbitrary \mathcal{O} if \mathcal{O}/\mathfrak{p} is regular of dimension *d*. It was precisely for this inequality that we assumed the excellence of \mathcal{O} . For a more direct proof of this corollary, see [R. Achilles, P. Schenzel and W. Vogel, "Einige Anwendungen der normalen Flachheit", Preprint, Martin-Luther-Universität, 1975].

We now proceed to show that conditions (i), (ii) and (iii) of Theorem 1 are equivalent.

 $(i) \Rightarrow (ii)$. Since p is permissible in \mathcal{O} , we have d = e, and for every $n \ge 0$, p^n/p^{n+1} is \mathcal{O}/p -flat, hence \mathcal{O}/p -free. Therefore, we have

$$H_{\mathfrak{p}}^{(0)}(n) = \dim_{k} \mathfrak{p}^{n} / \mathfrak{m} \mathfrak{p}^{n}$$

= $\dim_{k} \mathfrak{p}^{n} / \mathfrak{p}^{n+1} \otimes_{\mathscr{O}/\mathfrak{p}} k$
= $\operatorname{rank}_{\mathscr{O}/\mathfrak{p}} \mathfrak{p}^{n} / \mathfrak{p}^{n+1}$
= $\dim_{\mathscr{O}_{\mathfrak{p}}/\mathfrak{p}\mathscr{O}_{\mathfrak{p}}} \mathfrak{p}^{n} \mathscr{O}_{\mathfrak{p}} / \mathfrak{p}^{n+1} \mathscr{O}_{\mathfrak{p}}$
= $H_{\mathscr{O}_{\mathfrak{p}}}^{(0)}(n).$

Thus $H_{\mathfrak{p}}^{(0)} = H_{\mathfrak{O}_{\mathfrak{p}}}^{(0)}$, so that $H_{\mathfrak{p}}^{(d)} = H_{\mathfrak{O}_{\mathfrak{p}}}^{(d)} = H_{\mathfrak{O}}^{(0)}$, the last equality by Lemma (1.3).

 $(ii) \Rightarrow (iii)$. Since \mathcal{O}/\mathfrak{p} is regular, we have d = e.

 $(iii) \Rightarrow (ii)$. We have only to show that \mathcal{O}/\mathfrak{p} is regular. Choose $t_1, \ldots, t_e \in \mathfrak{m}$ such that their canonical images $\overline{t}_1, \ldots, \overline{t}_e$ in $\overline{\mathcal{O}} = \mathcal{O}/\mathfrak{p}$ form a (necessarily minimal) set of generators of $\overline{\mathfrak{m}} = \mathfrak{m}/\mathfrak{p}$. Let $\mathfrak{q} = \sum_{i=1}^{e} t_i \mathcal{O}$. Then $\mathfrak{m} = \mathfrak{p} + \mathfrak{q}$ and $e = \mu(\mathfrak{q})$. Therefore, the assumption $H_{\mathcal{O}}^{(0)} = H_{\mathfrak{p}}^{(e)}$ implies, by Lemma (1.2)(3), that we have

$$\mu(q^n) = \binom{n+e-1}{e-1}$$

(*)

$$\mu(\mathfrak{m}^{n+1}) = \mu(\mathfrak{q}^{n+1}) + \mu(\mathfrak{m}^n\mathfrak{p})$$

for every $n \ge 0$. Let $S_n = \{t^{\alpha} | |\alpha| = n\}$. (Here we have used the standard notation: $t^{\alpha} = t_1^{\alpha_1} \dots t_e^{\alpha_e}$ and $|\alpha| = \alpha_1 + \dots + \alpha_e$ for $\alpha = (\alpha_1, \dots, \alpha_e) \in (\mathbb{Z}^+)^e$.) It follows from (*) and Lemma (1.2)(1) that the following two statements are true for every $n \ge 0$.

- $(1)_n$ S_n is a minimal set of generators of q^n .
- (2)_n If T_n is any minimal set of generators of $\mathfrak{m}^n\mathfrak{p}$, then $T_n \cup S_{n+1}$ is a minimal set of generators of \mathfrak{m}^{n+1} .

Suppose now that \mathcal{O}/p is not regular. Then there exists $r \in \mathbb{Z}^+$ and $\alpha = (\alpha_1, \ldots, \alpha_e) \in (\mathbb{Z}^+)^e$ with $|\alpha| = r$ such that

$$\bar{t}^{\alpha} \in \sum_{\substack{|\beta|=r\\\beta\neq\alpha}} \bar{t}^{\beta}\overline{\mathcal{O}} + \bar{\mathfrak{m}}^{r+1}.$$

This means that

$$t^{\alpha} \in \sum_{x \in S_r - \{t^{\alpha}\}} x \mathcal{O} + \mathfrak{m}^{r+1} + \mathfrak{p}.$$

We can therefore write $t^{\alpha} = y + p$ with $p \in p$ and

$$y \in \sum_{x \in S_r - \{t^{\alpha}\}} x \mathcal{O} + \mathfrak{m}^{r+1}.$$

If $p \neq 0$, let $s \in \mathbb{Z}^+$ be such that $p \in m^{s_p} - m^{s+1}p$. Then there exists a minimal set T of generators of m^{s_p} such that $p \in T$. If p = 0, we put $s = \infty$. Now consider the three cases s+1 < r, s+1 = r and s+1 > r.

Case (1). s+1 < r. Then $p = t^{\alpha} - y \in \mathfrak{m}^r \subset \mathfrak{m}^{s+2}$. This contradicts (2)_s, since we may take $T_s = T$, so that $p \in T_s$.

Case (2). s+1 = r. In this case we have

$$t^{\alpha} = y + p \in \sum_{x \in S_r - \{t^{\alpha}\}} x\mathcal{O} + p\mathcal{O} + \mathfrak{m}^{s+2},$$

which again contradicts (2)_s, by taking $T_s = T$.

Case (3). s+1 > r. In this case $p \in \mathfrak{m}^{s}\mathfrak{p} \subset \mathfrak{m}^{r+1}$, so that we have

$$t^{\alpha} = y + p \in \sum_{x \in S_r - \{t^{\alpha}\}} x \mathcal{O} + \mathfrak{m}^{r+1},$$

which contradicts $(2)_{r-1}$.

This shows that \mathcal{O}/\mathfrak{p} is regular and d = e, which proves (ii).

 $(ii) \Rightarrow (i)$. We prove this implication by induction on d. The case d = 0 is trivial. We shall now prove:

(A) The implication (ii) \Rightarrow (i) for d = 1.

(B) The inductive step from d-1 to d, assuming (A).

We first prove (B). Let $d \ge 1$ and let $t_1, \ldots, t_d \in \mathfrak{m}$ be such that $\mathfrak{m} = \mathfrak{p} + \sum_{i=1}^{d} t_i \mathcal{O}$. Let $\mathfrak{n} = \mathfrak{p} + \sum_{i=1}^{d-1} t_i \mathcal{O}$. Then $\mathfrak{m} = \mathfrak{n} + t_e \mathcal{O}$. Therefore $H_{\mathcal{O}}^{(0)} \le H_{\mathfrak{n}}^{(1)}$, by Lemma (1.2)(2). Also $H_{\mathfrak{n}}^{(0)} \le H_{\mathfrak{p}}^{(d-1)}$, by Lemma (1.2)(2). Therefore $H_{\mathcal{O}}^{(0)} \le H_{\mathfrak{n}}^{(1)} \le H_{\mathfrak{p}}^{(d)}$. Since $H_{\mathcal{O}}^{(0)} = H_{\mathfrak{p}}^{(d)}$, we get $H_{\mathcal{O}}^{(0)} = H_{\mathfrak{n}}^{(1)}$. Now \mathcal{O}/\mathfrak{n} is regular of dimension 1. Therefore, by (A), $H_{\mathcal{O}}^{(0)} = H_{\mathfrak{n}}^{(1)}$ implies that \mathfrak{n} is permissible in \mathcal{O} . Hence

(*)
$$H_{\mathcal{O}}^{(0)} = H_{\mathcal{O}_{n}}^{(1)}$$

by Lemma (1.3). Thus $H_{\mathcal{O}_{\mathfrak{n}}}^{(1)} = H_{\mathfrak{p}}^{(d)}$, which gives $H_{\mathcal{O}_{\mathfrak{n}}}^{(0)} = H_{\mathfrak{p}}^{(d-1)}$. This implies that $H_{\mathcal{O}_{\mathfrak{n}}}^{(0)} \ge H_{\mathfrak{p}\mathcal{O}_{\mathfrak{n}}}^{(d-1)}$, since $\mu(\mathfrak{p}^n\mathcal{O}_n) \le \mu(\mathfrak{p}^n)$ for every *n*. On the other hand, by Lemma (1.2)(2), we have $H_{\mathcal{O}_{\mathfrak{n}}}^{(0)} \le H_{\mathfrak{p}\mathcal{O}_{\mathfrak{n}}}^{(d-1)}$, since

$$\mathfrak{nO}_{\mathfrak{n}} = \mathfrak{pO}_{\mathfrak{n}} + \sum_{i=1}^{d-1} t_i \mathcal{O}_{\mathfrak{n}}.$$

Thus $H_{\mathcal{O}_{\mathfrak{n}}}^{(0)} = H_{\mathfrak{p}\mathcal{O}_{\mathfrak{n}}}^{(d-1)}$. This implies, by induction hypothesis, that $\mathfrak{p}\mathcal{O}_{\mathfrak{n}}$ is permissible in $\mathcal{O}_{\mathfrak{n}}$, since $\mathcal{O}_{\mathfrak{n}}/\mathfrak{p}\mathcal{O}_{\mathfrak{n}}$ is regular of dimension d-1. Therefore $H_{\mathcal{O}_{\mathfrak{p}}}^{(d-1)} = H_{\mathcal{O}_{\mathfrak{n}}}^{(0)}$, by Lemma (1.3). This gives $H_{\mathcal{O}_{\mathfrak{p}}}^{(d)} = H_{\mathcal{O}_{\mathfrak{n}}}^{(1)} = H_{\mathcal{O}}^{(0)}$, by (*). Therefore, by Lemma (1.3), \mathfrak{p} is permissible in \mathcal{O} , and (B) is proved.

We now turn to the proof of (A). We are given that \mathcal{O}/\mathfrak{p} is a discrete valuation ring and $H_{\mathcal{O}}^{(0)} = H_{\mathfrak{p}}^{(1)}$. We have to show that $gr_{\mathfrak{p}}(\mathcal{O})$ is \mathcal{O}/\mathfrak{p} -flat or, equivalently, that $\mathfrak{p}^n/\mathfrak{p}^{n+1}$ is \mathcal{O}/\mathfrak{p} -free for every $n \ge 0$. Choose $t \in \mathfrak{m}$ such that its image \overline{t} in \mathcal{O}/\mathfrak{p} is a uniformising parameter for \mathcal{O}/\mathfrak{p} . It is then enough to show that \overline{t} is a non-zero divisor in $\mathfrak{p}^n/\mathfrak{p}^{n+1}$ for every $n \ge 0$.

By the choice of t, we have $m = p + t\mathcal{O}$. Therefore the equality $H_{\mathcal{O}}^{(0)} = H_{\mathfrak{p}}^{(1)}$ implies, by Lemma (1.2)(3), that $\mu(t^m \mathfrak{p}^n) = \mu(\mathfrak{p}^n)$ for all $m, n \ge 0$, so that $\mu(m^n) = \sum_{i=0}^n \mu(t^i \mathfrak{p}^{n-i})$.

Suppose now that there exists $n \ge 0$ such that \overline{t} is a zero-divisor in p^n/p^{n+1} . Then there exists $p \in p^n - p^{n+1}$ such that $tp \in p^{n+1}$. We consider the two cases $p \notin mp^n$ and $p \in mp^n$.

Case (1). $p \notin \mathfrak{mp}^n$. In this case p can be completed to a minimal set, say S, of generators of \mathfrak{p}^n . Then $tS = \{tx | x \in S\}$ is a minimal set of generators of $t\mathfrak{p}^n$, since $\mu(t\mathfrak{p}^n) = \mu(\mathfrak{p}^n)$, as noted above. But this is a contradiction, by Lemma (1.2)(1), of the equality

$$\mu(\mathfrak{m}^{n+1}) = \sum_{i=0}^{n+1} \mu(t^{i}\mathfrak{p}^{n+1-i}),$$

since $tp \in tS \cap p^{n+1}$.

Case (2)² $p \in \mathfrak{mp}^n$. Since $\mathfrak{mp}^n = (\mathfrak{p} + t\mathcal{O})\mathfrak{p}^n = \mathfrak{p}^{n+1} + t\mathfrak{p}^n$, we can write $p = q'_{n+1} + t^{\alpha_0 - 1}p_n$ with $q'_{n+1} \in \mathfrak{p}^{n+1}$, $p_n \in \mathfrak{p}^n$ and α_0 an integer ≥ 2 . Since $p \notin \mathfrak{p}^{n+1}$, we may choose q'_{n+1} , α_0 and p_n to be such that $p_n \in \mathfrak{p}^n - \mathfrak{mp}^n$. Now $tp = tq'_{n+1} + t^{\alpha_0}p_n$. Put $q_{n+1} = t^{\alpha_0}p_n = tp - tq'_{n+1}$. Then $q_{n+1} \in \mathfrak{p}^{n+1}$. Suppose $q_{n+1} \in \mathfrak{mp}^{n+1} = \mathfrak{p}^{n+2} + t\mathfrak{p}^{n+1}$. Then we can write $q_{n+1} = q_{n+2} - t^{\alpha_1}p_{n+1}$ with $q_{n+2} \in \mathfrak{p}^{n+2}$, $\alpha_1 \geq 1$ and $p_{n+1} \in \mathfrak{p}^{n+1}$. Now, if $q_{n+1} \notin \mathfrak{p}^{n+2}$, we may assume (by choosing $q_{n+2}, \alpha_1, p_{n+1}$ suitably) that $p_{n+1} \in \mathfrak{p}^{n+1} - \mathfrak{mp}^{n+1}$. If $q_{n+1} \in \mathfrak{p}^{n+2}$, then we put $q_{n+2} = q_{n+1}$, $p_{n+1} = 0$ and $\alpha_1 = \alpha_0 + 1$. We get $q_{n+2} = t^{\alpha_0}p_n + t^{\alpha_1}p_{n+1}$. Proceeding thus, we write

(**)
$$q_{n+r+1} = t^{\alpha_0} p_n + t^{\alpha_1} p_{n+1} + \dots + t^{\alpha_r} p_{n+r},$$

 2 The author wishes to express his thanks to the referee for pointing out a correction in the proof of this case.

where $q_{n+r+1} \in p^{n+r+1}$ and for every $i, 0 \leq i \leq r$, either $p_{n+i} \in p^{n+i} - mp^{n+i}$ and $\alpha_i \geq 1$ or $p_{n+i} = 0$ and $\alpha_i = \alpha_0 + 1$. Now suppose we have obtained q_{n+r+1} for a given $r \geq 0$. For this r, let

$$\alpha = \inf \{\alpha_0, \alpha_1 + 1, \dots, \alpha_r + r\}$$

and let

$$J = \{j | 0 \leq j \leq r \text{ and } \alpha = \alpha_i + j \}.$$

Then J is not empty, $\alpha_i = \alpha - j$ for every j in J and from (**) we get

(***)
$$q_{n+r+1} \equiv \sum_{j \in J} t^{\alpha-j} p_{n+j} (\text{mod } \mathfrak{m}^{n+\alpha+1})$$

Now, since $p_{n+j} \in p^{n+j} - mp^{n+j}$ for every $j \in J$, we can complete p_{n+j} to a minimal set of generators of p^{n+j} . Therefore, since we have

$$\mu(\mathfrak{m}^{n+\alpha}) = \sum_{i=0}^{n+\alpha} \mu(t^{n+\alpha-i}\mathfrak{p}^i),$$

we see by Lemma (1.2) that the set $\{t^{\alpha-j}p_{n+j}|j \in J\}$ can be completed to a minimal set of generators of $\mathfrak{m}^{n+\alpha}$. In particular, $\sum_{j\in J} t^{\alpha-j}p_{n+j}$ is not in $\mathfrak{m}^{n+\alpha+1}$, since J is non-empty. Therefore, by (***), q_{n+r+1} is not in $\mathfrak{m}^{n+\alpha+1}$. Therefore, since $q_{n+r+1} \in \mathfrak{p}^{n+r+1}$, we conclude that $n+r+1 < n+\alpha+1$, so that $r < \alpha \leq \alpha_0$.

This shows that the process of generating the q_{n+r+1} cannot go on indefinitely, i.e. we must eventually come to an r for which q_{n+r+1} is not in mp^{n+r+1} . For this r, q_{n+r+1} can be completed to a minimal set of generators of p^{n+r+1} and hence of m^{n+r+1} by Lemma (1.2), since by hypothesis

$$\mu(\mathfrak{m}^{n+r+1}) = \sum_{i=0}^{n+r+1} \mu(t^{i}\mathfrak{p}^{n+r+1-i}).$$

Now if $\alpha > r+1$ then (***) shows that $q_{n+r+1} \in m^{n+r+2}$, which is a contradiction. If $\alpha = r+1$ then, by Lemma (1.2), the set

$$\{q_{n+r+1}\} \cup \{t^{\alpha-j}p_{n+j}|j \in J\}$$

can be completed to a minimal set of generators of $\mathfrak{m}^{n+\alpha}$. This contradicts (***).

Thus (A) is proved, and the proof of the theorem is complete.

[11]

2. Proof of Theorems 2 and 3

(2.1) The proof of Theorems 2 and 3 is contained essentially in the proof of the Main Theorem in [6]. What is needed is elaboration of certain points. We do this in the proof below, referring frequently to [6].

(2.2) We have the following situation: p is a proper ideal of O, and $\mathcal{O} \xrightarrow{h} \mathcal{O}'$ is a blowing-up of \mathcal{O} with center p. We have $e = \operatorname{emdim} \mathcal{O}/p$ and $\delta = \text{tr.deg}_k k'$, where $k \to k'$ is the residue field extension induced by h. We are given $t = (t_0, t_1, ..., t_e)$ with $t_0 \in \mathfrak{p}$ such that $\mathfrak{p}\mathcal{O}' = t_0\mathcal{O}'$ and $t_i \in \mathfrak{m}, 1 \leq i \leq e$, such that $\mathfrak{m} = \mathfrak{p} + \sum_{i=1}^{e} t_i \mathcal{O}$. The ideals $\mathfrak{a}_{t,i}(n)$ of \mathcal{O}' and $\mathfrak{b}_{t_0}(n)$ of \mathscr{O} and the numerical functions $L_{t,i}$, $1 \leq i \leq e$, and L_{t_0} are defined as in the Introduction. Let $\mathcal{O}'' = \mathcal{O}'/\mathfrak{m}\mathcal{O}'$.

With the notation of (2.2) we shall prove the following three lemmas:

(2.3) LEMMA:

. .

$$H_{\mathcal{O}'}^{(0)} = H_{\mathcal{O}''}^{(e+1)} - \sum_{i=0}^{e} L_{t,i}^{(i)}.$$

- (2.4) LEMMA: If k = k' then $H_{\mathbf{p}}^{(0)} = H_{\mathcal{O}''}^{(1)} + L_{to}$.
- (2.5) LEMMA: $H_{\mathbf{p}}^{(0)} \ge H_{\mathcal{O}''}^{(1+\delta)}$.

Assume these three lemmas for the moment. Then we get an immediate

PROOF OF THEOREMS 2 AND 3: Since $D_{p} = H_{p}^{(e)} - H_{q}^{(0)}$, we have

$$\begin{aligned} H_{\emptyset}^{(0)} - H_{\emptyset'}^{(\delta)} &= H_{\mathfrak{p}}^{(e)} - H_{\emptyset'}^{(\delta)} - D_{\mathfrak{p}} \\ &= H_{\mathfrak{p}}^{(e)} - H_{\emptyset''}^{(e+1+\delta)} + \sum_{i=0}^{e} L_{t,i}^{(i+\delta)} - D_{\mathfrak{p}} \end{aligned}$$
(Lemma (2.3))
$$&\geq \sum_{i=0}^{e} L_{t,i}^{(i+\delta)} - D_{\mathfrak{p}}$$
(Lemma (2.5)).

This proves Theorem 2. Now, if k = k', then

$$H_{\mathscr{O}}^{(0)} - H_{\mathscr{O}'}^{(0)} = H_{\mathfrak{P}'}^{(e)} - H_{\mathscr{O}'}^{(e+1)} + \sum_{i=0}^{e} L_{t,i}^{(i)} - D_{\mathfrak{p}} \text{ (as above, since } \delta = 0)$$
$$= L_{t_0}^{(e)} + \sum_{i=0}^{e} L_{t,i}^{(i)} - D_{\mathfrak{p}} \qquad \text{(Lemma (2.4)).}$$

This proves Theorem 3.

PROOF OF LEMMA (2.3): Since $\mathcal{O}'' = \mathcal{O}' / \sum_{i=0}^{e} t_i \mathcal{O}'$, the lemma follows from [6, Theorem 1] and a straightforward induction on e.

PROOF OF LEMMA (2.4): Let \mathfrak{m}'' be the maximal ideal of \mathcal{O}'' . It is enough to show that there exists an exact sequence

(*)
$$0 \to \mathfrak{b}_{t_0}(n)/\mathfrak{mp}^n \to \mathfrak{p}^n/\mathfrak{mp}^n \xrightarrow{\varphi} \mathcal{O}''/\mathfrak{m}''^{n+1} \to 0$$

of k-vector spaces. For we have

$$H_{\mathfrak{p}}^{(0)}(n) = \dim_k \mathfrak{p}^n / \mathfrak{m}\mathfrak{p}^n, \qquad H_{\mathcal{O}'}^{(1)}(n) = \dim_k \mathcal{O}'' / \mathfrak{m}''^{n+1}$$

and

$$L_{t_0}(n) = \operatorname{length}_{\mathscr{O}} \mathfrak{b}_{t_0}(n)/\mathfrak{mp}^n = \dim_k \mathfrak{b}_{t_0}(n)/\mathfrak{mp}^n.$$

To show the existence of (*) we have only to define φ suitably. Since $\mathfrak{p}\mathcal{O}' = t_0\mathcal{O}'$, we can identify \mathcal{O}' with a localization of the subring $\{f/t_0^n|n \ge 0, f \in \mathfrak{p}^n\}$ of \mathcal{O}_{t_0} . Define $\psi: \mathfrak{p}^n \to \mathcal{O}''$ by $\psi(f) = \eta(f/t_0^n)$, where $\eta: \mathcal{O}' \to \mathcal{O}''$ is the canonical homomorphism. Then ψ induces a k-homomorphism $\overline{\psi}: \mathfrak{p}^n/\mathfrak{m}\mathfrak{p}^n \to \mathcal{O}''$. We define φ to be the composite of $\overline{\psi}$ and the canonical homomorphism $\mathcal{O}'' \to \mathcal{O}''/\mathfrak{m}''^{n+1}$. It was proved in [6, (3.3), Proof of Lemma 2] that φ is surjective if k = k'. Also, it is clear from the definition of $\mathfrak{b}_{t_0}(n)$ that ker $\varphi = \mathfrak{b}_{t_0}(n)/\mathfrak{m}\mathfrak{p}^n$. Thus (*) is exact and the lemma is proved.

PROOF OF LEMMA (2.5): By Lemma (2.4), we already have the inequality $H_{\mathfrak{p}}^{(0)} \geq H_{\mathfrak{O}'}^{(1+\delta)}$ in the case k = k'. The inequality in the general case can now be proved by a standard inductive procedure used in [1], [4] and [6]. What we do is the following: Choose an element $\alpha \in k' - k$. If $\delta \geq 1$, we assume that α is transcendantal. If $\delta = 0$, we assume that α is either separable or purely inseparable. Let $\overline{f}(Z) \in k[Z]$ be the minimal monic polynomial of α over k. (If α is transcendental, we take $\overline{f}(Z) = 0$.) Let $f(Z) \in \mathcal{O}[Z]$ be a monic lift of $\overline{f}(Z)$ such that, for every $i \geq 0$, if the coefficient of Z^i in $\overline{f}(Z)$ is 0 then the coefficient of Z^i in f(Z) is also 0. Let $\widetilde{\mathcal{O}}$ be the localization of $0[Z]/f(Z)\mathcal{O}[Z]$ at the prime ideal $\mathfrak{n} = (\mathfrak{m}[Z] + f(Z)\mathcal{O}[Z])/f(Z)\mathcal{O}[Z]$, where \mathfrak{m} is the maximal ideal of \mathcal{O} . Let $\widetilde{\mathcal{O}}$ be the localization of $\mathcal{O}'[Z]/f(Z)\mathcal{O}'[Z]$ at the maximal ideal of α of \mathcal{O}' and let $\widetilde{\mathcal{O}}'$ be the localization of $\mathcal{O}'[Z]/f(Z)\mathcal{O}'[Z]$ at the maximal ideal

$$\mathfrak{n}' = (\mathfrak{m}'[Z] + (Z-a)\mathcal{O}'[Z])/f(Z)\mathcal{O}'[Z],$$

26

where m' is the maximal ideal of \mathcal{O}' . Let $\eta' : \mathcal{O}' \to \widetilde{\mathcal{O}}'$ be the canonical homomorphism. Then there exists a commutative diagram

$$\begin{array}{c} \mathcal{O} \xrightarrow{h} \mathcal{O}' \\ \eta \\ \downarrow \\ \widetilde{\mathcal{O}} \xrightarrow{\widetilde{h}} \widetilde{\mathcal{O}}' \end{array}$$

such that

(i) \tilde{h} is a blowing-up of $\tilde{\mathcal{O}}$ with center $\tilde{\mathfrak{p}} = \mathfrak{p}\tilde{\mathcal{O}}$;

(ii) the residue field extension induced by \tilde{h} is the k-inclusion $k(\alpha) \to k'$. (See [6, (4.3), (4.6)].) Let $\tilde{\delta} = \text{tr.deg}_{k(\alpha)} k'$. If $\delta \ge 1$, then $\tilde{\delta} = \delta - 1$. If $\delta = 0$, then $[k':k(\alpha)] < [k':k]$. Therefore, by an obvious induction, we may assume that $H_{\tilde{\mathfrak{p}}}^{(0)} \ge H_{\mathcal{O}''}^{(1+\delta)}$, where $\tilde{\mathcal{O}}'' = \tilde{\mathcal{O}}'/\tilde{\mathfrak{m}}\tilde{\mathcal{O}}'$, $\tilde{\mathfrak{m}}$ being the maximal ideal of $\tilde{\mathcal{O}}$. Now, in order to complete the proof of the lemma, it is clearly enough to prove the following three statements:

 $\begin{array}{l} (1) \ H_{\mathfrak{p}}^{(0)} = H_{\widetilde{\mathfrak{p}}}^{(0)}. \\ (2) \ H_{\mathscr{O}''}^{(0)} \ge H_{\mathscr{O}''}^{(0)} \ if \ \widetilde{\delta} = \delta = 0. \\ (3) \ H_{\mathscr{O}''}^{(0)} = H_{\mathscr{O}'}^{(1)} \ if \ \widetilde{\delta} = \delta - 1. \end{array}$

PROOF OF (1): Let $\tilde{k} = k(\alpha)$ be the residue field of $\tilde{\mathcal{O}}$. For every $n \ge 0$, we have $H_{\tilde{\mathfrak{p}}}^{(0)}(n) = \dim_{\tilde{k}} \tilde{\mathfrak{p}}^n \otimes_{\tilde{\ell}} \tilde{k} = \dim_{\tilde{k}} \mathfrak{p}^n \otimes_{\ell} \tilde{k}$, since, $\tilde{\mathcal{O}}$ being \mathcal{O} -flat, we have $\tilde{\mathfrak{p}}^n \approx \mathfrak{p}^n \otimes_{\ell} \tilde{\mathcal{O}}$. Now $\mathfrak{p}^n \otimes_{\ell} \tilde{k} \approx (\mathfrak{p}^n \otimes_{\ell} k) \otimes_k \tilde{k}$. Therefore,

$$\dim_{\widetilde{k}} \mathfrak{p}^n \otimes_{\mathfrak{o}} \widetilde{k} = \dim_k \mathfrak{p}^n \otimes_{\mathfrak{o}} k = H_{\mathfrak{p}}^{(0)}(n).$$

PROOF OF (2) AND (3): Let \mathfrak{m}'' be the maximal ideal of \mathcal{O}'' . Then $\widetilde{\mathcal{O}}'' = \widetilde{\mathcal{O}}'/\widetilde{\mathfrak{m}}\widetilde{\mathcal{O}}' = \widetilde{\mathcal{O}}'/\mathfrak{m}\widetilde{\mathcal{O}}' = (\mathcal{O}''[Z])_{\mathfrak{n}''}$, where

$$\mathfrak{n}'' = (\mathfrak{m}''[Z] + (Z-a)\mathcal{O}''[Z])f(Z)\mathcal{O}''[Z].$$

Now, if $\tilde{\delta} = \delta - 1$, then α is transcendental and f(Z) = 0. Therefore the equality $H_{\emptyset''}^{(0)} = H_{\emptyset''}^{(1)}$ is clear in this case. This proves (3). If $\delta = 0$ and α is separable then $\overline{f}(Z)$ being a separable polynomial, $\emptyset'' \to \tilde{\emptyset}''$ is etale, so that in this case we have, in fact, $H_{\emptyset''}^{(0)} = H_{\emptyset''}^{(0)}$. Now suppose $\delta = 0$ and α is purely inseparable. Then $\overline{f}(Z) = Z^q - \beta$, where q is a power of char k and $\beta = \alpha^q \in k$. This implies that $f(Z) = Z^q - b$, where $b \in \emptyset$ is some lift of β . Let \overline{b} be the canonical image of b in \emptyset'' . Since $\theta''[Z]/(Z^q - \overline{b})\theta''[Z]$ is already a local ring, we have

$$\widetilde{\mathcal{O}}^{\prime\prime} = \mathcal{O}^{\prime\prime}[Z]/(Z^q - \overline{b})\mathcal{O}^{\prime\prime}[Z].$$

Let \bar{a} be the canonical image of a in \mathcal{O}'' and let $t = \bar{b} - \bar{a}^q$. Then $t \in \mathfrak{m}''$. Let $Y = Z - \bar{a}$. Then $\tilde{\mathcal{O}}'' = \mathcal{O}''[Y]/(Y^q - t)\mathcal{O}''[Y]$. Now, the inequality $H_{\mathcal{O}''}^{(Q)} \ge H_{\mathcal{O}''}^{(Q)}$ follows from [6, Lemma (4.5)]. This proves (2).

REFERENCES

- [1] BENNET, B. M.: On the characteristic functions of a local ring. Ann. of Math. 91 (1970) 25-87.
- [2] GROTHENDIECK, A.: Eléments de géométrie algébrique. Publications Mathématiques (1960).
- [3] HIRONAKA, H.: Resolution of singularities, Ann. of Math. 79 (1964) 109-326.
- [4] HIRONAKA, H.: Certain numerical characters of singularities. J. Math. Kyoto Univ. 10-1 (1970) 151-187.
- [5] NAGATA, M.: Local Rings, Interscience, 1962.
- [6] SINGH, B.: Effect of a permissible blowing-up on the local Hilbert functions. Inventiones math. 26 (1974) 201–212.

(Oblatum 20-XII-1974 & 6-1-1976)

School of Mathematics Tata Institute of Fundamental Research Colaba, Bombay 400 005