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Let X be a finite unramified Galois covering of a compact Riemann
surface X with Galois group G, and let V be a finite-dimensional

complex vector space on which G acts. The group G then acts on

X x V in a natural way. The quotient of X x V by the action of G,
which we call V, is a holomorphic vector bundle on X.
We call a holomorphic vector bundle W on X a finite vector bundle

if there are polynomials f and g whose coefficients are non-negative
integers, with f ~ g, such that f(W) and g(W) are isomorphic (for the
definition of f(W), see §3). It was shown by Weil in [4] that the vector
bundle V constructed above is a finite vector bundle.

We shall prove the converse: for any finite vector bundle V on X,
there exist X, V, G as above, such that V is the quotient of X x V by
G.

This theorem holds, in fact, when X is a complete, connected,
reduced scheme defined over a field k of characteristic zero, and goes

through with only slight modifications in positive characteristic, enab-
ling us to define a "fundamental group scheme" in this case.
Note that a special case of this theorem is classical: if 7r denotes the

algebraic fundamental group of X, then the group of characters

(one-dimensional representations) of 7r is identical to the group of line
bundles L on X such that LO- is trivial, for some positive integer
m. This is a simple consequence of the standard Kummer theory for
abelian extensions.

We explain the formalism of Tannaka Categories in §1, and §2
contains generalities on principal bundles, which we require for the
proof of our theorem.

1 am grateful to Professor Seshadri for the keen interest he has taken
in this paper, and for the many discussions 1 have had with him.
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1. Tannaka categories

Let G be an affine group scheme defined over a field k, R its

coordinate ring, and G-mod the category of finite-dimensional left

representations of G. Let k -mod be the category of finite-dimensional
k -vector spaces, and Tk : G-mod ~ k -mod the forgetful functor. Let e
(~ resp.) denote the usual tensor product functor on G-mod (k -mod
resp.). Let Lo be the trivial representation of G.

Putting (G-mod, , Tk, Lo) = (Y, 0, T, Lo), we note that the follow-
ing statements are true:
Y1: Y is an abelian k-category (existence of direct sums of finitely

many objects of C(6 included)
Y2: Obj % is a set.
Y3 : T: Y ~ k -mod is a k-additive faithful exact functor.

Y 4: : Y  Y ~ Y is a functor which is k -linear in each variable, and

Y5: (g) is associative, preserving T, in the following sense: Let H:
~ 03BF (1Y x ) ~  03BF ( x 1Y) be the equivalence of functors that gives
the associativity of (g). For objects V1, V2, V3 of Y, T(H(V1, V2, V3))
gives an isomorphism of TV, Q9 (TV2 Q9 TV3) with (TV1 Q9 TV2) Q9 TV3.
We ask that this isomorphism coincides with the usual one that gives
the associativity of the tensor product for vector spaces.
Y6: (g) is commutative, preserving T, in the above sense.
Y7: There is an object Lo of Y, and an isomorphism ç : k - TLo, such

that Lo is an identity object of (6, preserving T.
Y8: For every object L of 16 such that TL has dimension equal to

one, there is an object L -1 such that L  L-1 is isomorphic to Lo.
Any (Y, , T, Lo) shall be called a Tannaka category.

DEFINITION: Let % be any category where Y1 and Y2 hold. Let S be
a subset of Obj (6. Then

t

such that vIe V2 C (D Ph and W is isomorphic to V2/ Vll-

By Y(S), we mean the full subcategory of cg with Obj 16(S) = S. Note
that cg(S) is an abelian category too. Finally, S will be said to generate
Y if obj cg = S. The following theorems are due to Saavedra (see
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Theorem 1 of [2]):

THEOREM (1.1): Any Tannaka category is the category of finite-
dimensional left representations of an affine group scheme G, and this
sets up a bijective correspondence between affine group schemes and
Tannaka categories.

THEOREM (1.2): A group scheme G is finite if and only if there exists a

finite collection S of G-representations which generates G-mod (in the
sense of the above definition).

THEOREM (1.3): Any homomorphism of Tannaka categories from
(G-mod, , Tk, Lo) to (H-mod, , Tk, Lo) is induced by a unique
homomorphism (of affine algebraic group schemes) from H to G.

2. Principal bundles

Let X be a nonempty k-prescheme, 9(X) the category of quasi-
coherent sheaves on X,  : Y(X)  Y(X) ~ Y(X) the tensor product
functor on sheaves.

Let G be an affine group scheme defined over k.

Recall that j : P ~ X is said to be a principal G -bundle on X if
(a) j is a surjective flat affine morphism,
(b) 03A6 : P x G ~ P defines an action of G on P suchthatj o q, = j 0 Pl,
(c) 1/1: P x G ~ P  xP by 1JI = (p,, 03A6 ) is an isomorphism.
In this case, F ~ j*(F) gives an isomorphism of Y(X) with the

category of G-sheaves on P, by the method of flat descent (see [1]).
Every left representation V of G gives rise to a G -sheaf on P in a
natural way, and by taking G-invariants, one gets a sheaf on X,
denoted by F(P) V. This gives rise to a functor F(P): G -mod - Y(X),
and putting F = F(P), we note that the following are true:
FI : F is a k-additive exact functor,
F2: F
F3: The obvious statements parallel to Y5, 166, Y7; in particular,

FLo = Ox, where Lo is the trivial representation, and finally,
F4: If rank V = n, then FV is locally free of rank n ; in particular, F

is faithful.

From now on, F will denote a functor where F 1 to F4 hold.

Let G -mod’ be the category of all (possibly infinite-dimensional) left
representations of G.
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LEMMA (2.1): There is a unique functor F : G-mod ’ - Y(X), such
that :

(i ) The statements F1, F2, F3 hold for F
(ii) FIG-mod = F
(iii) FV is flat for all V, and faithfully flat if V 0 0, and
(iv ) F preserves direct limits.

PROOF: Simply define FV to be the direct limit of FW, where W
runs through the collection of finite-dimensional G-invariant sub-

spaces of V, and the lemma is then easily checked. We will put F = F
from now on.

LEMMA (2.2): F induces a functor from affine G-schemes to affine
X-preschemes.

PROOF: Let Y = Spec A be a scheme on which G operates, and let
m : A ~k A ~ A be the multiplication map on A. Since A is a

commutative, associative k-algebra with identity, by F2 and F3, we
deduce that FA is a commutative, associative sheaf of Ox-algebras
with identity. This is enough to conclude that there is an affine

morphism j : Z - X such that j*(Oz) is isomorphic to FA as a sheaf of
Ox-algebras. We shall denote Z by FY from now on.

DEFINITION: Let G operate on itself by the left. Put P(F) = FG, and
let j:P(F)~X be the canonical morphism. Since no confusion is

likely to arise, we shall denote P(F) simply by P.

LEMMA (2.3): P is a principal G-bundle on X.

PROOF: By definition, j is an affine morphism. That j is flat and

surjective follows from the fact that j*(Op) is faithfully flat ((üi) of
Lemma 2.1). Properties (b) and (c) will be checked later.

LEMMA (2.4): If Y and Z are schemes on which G operates,
F(YxZ)=FYxxFZ. Furthermore, if G acts trivially on Y, then

FY=X  Y.

PROOF: Obvious.

PROOF OF LEMMA (2.3): We will denote by G’ the same scheme as
G, equipped with the trivial action of G. Let ~ = G  G’ ~ G be the
multiplication map of G, and 03C8 : G  G’ ~ G  G be given by 03C8(x, y ) =

(x, ç (x, y )). Note that cp and 03C8 are both G-morphisms; consequently
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there are X-morphisms

Since ~ defines an action of G’ on G, 03A6 defines an action of G on P,
and j o p = j - 0 simply because 0 is an X-morphism.

Also, 03C8 is an isomorphism, from which it follows that 1p is an

isomorphism too, thus concluding the proof of the lemma.
Now that we have constructed a principal bundle P, given a functor

F, the next step is to show that F is the functor naturally associated to
P, that is:

PROPOSITION (2.5): F = F(P).

We introduce some notation first. Let Z be a scheme on which G

operates on the right, and let V be any left representation of G. We
shall denote by Vz the sheaf V 0kOZ equipped with the following
action of G : g(v ~ f) = gv ~ f 03BF 03C1(g), where v E V, g E G, and f E
F(U, Oz), for some open U in Z. This is the natural construction of a
G-sheaf on Z, given a representation V, mentioned in the beginning of
the section.

To show that two sheaves are isomorphic on X, it suffices to prove
that their inverse images are isomorphic as G-sheaves on P, and hence
the above proposition is reduced to the following:

LEMMA (2.6): There is a functorial isomorphism (of G-sheaves ) of
j*(FV) with Vp.

We shall require the aid of

LEMMA (2.7): Let Y be an affine scheme on which G operates on the
left, and H operates on the right. Assume that the actions of G and H on
Y commute with each other. Let Z = FY. Then Z is a H-scheme, and

j : Z ~ X is a H-morphism, where X has the trivial action of H.
Furthermore, F induces a functor Êfrom the category of sheaves on Y
with commuting G and H action to the category of H sheaves on Z.
The proof of Lemma 2.7 is trivial, and we omit it. To apply the

Lemma, put G = H = Y, with the actions of G and H on Y being given
by left and right translations respectively.

Let V be a representation of G, and V’ its underlying vector space
equipped with the trivial action of G. Therefore, there are G -sheaves
VG and V’G (corresponding to the right action of G) on G. We shall
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define left actions of G on VG and V’G as follows:

With F as in Lemma 2.7, it is trivial to check that F(VG) = Vp and
F( V b) = j*(FV). To prove Lemma 2.6, it therefore suffices to prove

LEMMA (2.8): There is a functorial isomorphism of VG with Vb as
sheaves on G, with G acting both on the left and the right.

PROOF: Let W be any vector space. We denote by the scheme
Spec (S(W*)) again by W. Then the sheaf W Q9k(Ja can be identified
canonically with the sheaf of morphisms from G to the scheme W.
Using this identification, define 03BB : V’G ~ VG by 03BB(f)(g)=g-1f(g),

where g ~ G, f : G ~ V’ . The map À fumishes the required isomor-
phism, thus concluding the proof of Prop. 2.5.

PROPOSITION (2.9): There is a bijective correspondence between
principal G-bundles on X and functors F : G-mod ~ 9(X) such that F1
to F4 hold. Furthermore,
(a ) Let f : Y ~ X be a morphism, and assume that F = G-mod ~ W(X)

satisfies F1 to F4. Then F1 to F4 hold for f* 03BF F also, and
P(f*03BFF)=f*(P(F)).

(b ) Let X = Spec k, and F : G-mod ~ k-mod the forgetful functor.
Then P(F) = G.

(c ) Let’P: H ~ G be a morphism of affine group schemes. Let P be a
principal H-bundle on X, and P’ the quotient of P x G by H. Let
R~ : G-mod ~ H-mod be the restriction functor. Then F(P) 0 Rcp =

F(P’).

PROOF: (b) is trivial, and (a) and (c) are proved by chasing the
construction of P (F).

REMARK: The condition F4, which is crucial in proving that j : P ~ X
is flat and surjective, is actually a consequence of FI, F2 and F3.
However, we do not need this fact.

3. Essentially finite vector bundles

Let X be a complete connected reduced k -scheme, where k is a

perfect field. Let Vect (X) denote the set of isomorphism classes, [V],
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of vector bundles V, on X. Then Vect (X) has the operations:
(a) [V]+[V’]-[V~V’], and
(b) [V] . [V’] = [V ~ V’].
In particular, for any vector bundle V on X, given a polynomial f

with non-negative integer coefficients, f ( V) is naturally defined.
Let K(X) be the Grothendieck group associated to the additive

monoid, Vect(X); note that this is not the usual Grothendieck ring of
vector bundles on X, since 0 ~ V’ ~ V ~ V" - 0 exact does not imply
that [V’]+[V"]=[V].
The Krull-Schmidt-Remak theorem holds, since H°(X, end V) is

finite-dimensional. In particular, [W], where W runs through all

indecomposable vector bundles on X, form a free basis for K(X).

DEFINITION: For a vector bundle V, S(V) is the collection of all the

indecomposable components of V~n, for all non-negative integers n.

LEMMA (3.1): Let V be a vector bundle on X. The following are
equivalent :
(a ) [V] is integral over Z in K(X).
(b ) [V]~1 is integral over Q in K(X)~zQ.
(c ) There are polynomials f and g with non -negative integer coeffi-

cients, such that f(V) is isomorphic to g(V), and f ~ g.
(d) S(V) is finite.

PROOF:

(a) ~ (b) holds merely because K (X) is additively a free abelian
group.

(c) ~ (b) is obvious.
(b) ~ (c): Let h ~ Z[t] such that h ([V]) = 0, and h ~ 0.

Choose f, g ~ Z[t] such that f and g have non-negative coefficient,
and h = f - g. Then [f(V)]=[g(V)] in K(X), but Vect(X), as a
monoid, has the cancellation property, so it follows that f ( V) is

actually isomorphic to g(V).
(d) ~ (a): The abelian subgroup of K(X) with basis as S(V) is

certainly stable under multiplication by [V].
(a) ~ (d): Simply note that if m is the degree of a monic polynomial

h such that h([V]) = 0, then any member of S(V) is actually an
indecomposable component of V"’ for some r lying between 0 and
m - 1.

DEFINITION: A vector bundle V on X is said to be finite if it satisfies

any of the equivalent hypothesis of Lemma 3.1.
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LEMMA (3.2):
(1) Vl, V2 finite ~ VIE£) V2, VI Q9 V2, VT finite.
(2) V1~ V2 finite ~ V1 finite.
(3) A line bundle L is finite ~ L ’- is isomorphic to OX for some

positive integer m.

PROOF:

(1) is obvious.

(2) follows from the fact that S(Vi) is contained in S(VIE9 V2).
(3) follows from the fact that S (L ) = {L~m : m ~ 0}.

LEMMA (3.3): Let X be a smooth projective curve. For a vector bundle
V, let C(V) = sup[03BC(W) = deg W/rk W, 0 ~ W C V}.
Then, (a) C(V) is finite, and

(b ) if 0 ~ V’ ~ V ~ V" ~ 0 is an exact sequence of vector bundles on
X, C(V):5 max (C(V’), C(V")).

PROOF: That D(V) = sup {deg L : L C V, L a line bundlel is finite is
well known. Since C(V)~max{D(Ar(V))/r: 1~r~rk V}, (a) fol-

lows.

Given an injection j : W ~ V and an exact sequence 0 ~ V’ ~ V ~
V" ~ 0, there is a canonical factoring:

such that the horizontal rows are exact, and j’, j" are generic injections.
Let U’, U" be the subbundles of V’, V" respectively, such that

j ’ ( W’ ) C U’ and j"(W") c U", and rk W’ = rk U’ and rk W" = rk U".
Then deg W’ ~ deg U’, and deg W":5 deg U".
Now,

which proves (b).

PROPOSITION (3.4): Any finite vector bundle V on a smooth projective
curve X is semistable of degree zero.
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PROOF: By Lemma 3.3, C(V~n) ~ sup{C(W): W E S(V)l = T(V),
which is finite, since S( V) is a finite collection. Consequently, for any
subbundle W of V, WO 0, since W~n is a subbundle of V
03BC(W~n) ~ T(V), for all non-negative integers n. But a simple calcula-
tion shows that 03BC(W~n) = n03BC(W), which obviously implies that

03BC(W) ~ 0.
In particular, since both V and V* are finite, 03BC(V) ~ 0 and 03BC(V*) =

-03BC(V) ~ 0. Therefore we have shown that
(a) IL (V) = 0, and
(b) for all subbundles W of V, W ~ 0, 03BC(W) ~ 0.
For the rest of this section, X will be a complete, connected, reduced

scheme, and the phrase "a curve Y in X " is to be interpreted as a
morphism f : Y ~ X, where Y is a smooth, connected, projective
curve, and f is a birational morphism onto its image.

DEFINITION: A vector bundle on X is semistable if and only if it is
semistable of degree zero restricted to each curve in X.

Since the restriction of a finite vector bundle is also finite, we have
the following obvious corollary:

COROLLARY (3.5): A finite vector bundle on X is semistable.

LEMMA (3.6):
(a) If V is a semistable vector bundle on X, and W is either a

subbundle or a quotient bundle of V, such that WI Y has degree zero for
each curve Y in X, then W is semistable.

(b ) The full subcategory of Y(X) with objects as semistable vector
bundles on X is an abelian category.

PROOF:

(a) Under the given hypothesis, it follows that Wl Y is semistable of
degree zero, and therefore W is semistable.

(b) Let V and W be semistable vector bundles on X, and let f : V ~ W
be a morphism. For a geometric point x : spec k ~ X, let r(x ) be the rank
of the morphism x*(f): x*(V)~x*(W). Then, by elementary degree
considerations, r(x) is constant restricted to each curve, and since X is
connected, r(x ) is constant globally. Now, since X is reduced, it follows
that ker f and coker f are locally free, and moreover, (ker f)|Y =
ker(f|Y) and (coker f)|Y = coker (f|Y), and both these bundles are
semistable of degree zero on Y; the lemma follows.

DEFINITION: We shall denote by SS(X) the full subcategory of Y(X)
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with objects as semistable vector bundles. Let F be the collection of
finite vector bundles, regarded as a subset of Obj SS(X), and let
EF(X) be the full subcategory of SS(X) with Obj EF(X) = F, where
the meaning of F is to be taken in the sense of §1. The objects of
EF(X) will be called essentially finite vector bundles.

PROPOSITION (3.7):
(a ) If V is an essentially finite vector bundle on X, and W is either a

subbundle or a quotient bundle of V such that WI Y has degree zero for
each curve Y in X, then W is essentially finite.

(b ) EF(X) is an abelian category.
(c) If Vi and V2 are essentially finite, so are V1~ V2 and V*.

PROOF: (a) and (b) are obvious consequences of Lemma 3.6. To
prove (c), choose Wi and Pi such that

(i) W is finite,
(ii) Pi is a subbundle of W, and Pi is semistable, and
(iii) Vi is a quotient of Pi, for i = 1, 2.

Then,
(i) Wl ~ W2 is finite by Lemma 3.2,
(ii) Pi (g) P2 is a subbundle of WI ~ W2, and

(iii) Vi (g) V2 is a quotient of Pi ~ P2.

Both Pi ~ P2 and Vi (g) V2 are of degree zero restricted to each curve
in X; consequently, by (a), both P1~P2 and V1~ V2 are essentially
finite.

In a similar fashion, one proves that the dual of an essentially finite
vector bundle is essentially finite.

PROPOSITION (3.8): Let G be a finite group scheme, and j : X’ ~ X a
principal G-bundle. Then, for the functor F(X’) : G-mod ~ Y(X),
F(X’) V is always an essentially finite vector bundle.

PROOF: We shall show that F(X’) V is of degree zero restricted to
each curve. To do this, we may assume that X itself is a smooth

projective curve. Let R be the coordinate ring of G, and n the vector
space dimension of R. Then, n deg (F(X’) V) = deg (j *(F(X’) V); but
j*(F(X’)V is, by definition, a trivial vector bundle on X’, and
therefore deg (F(X’) V) is equal to zero. Note that "degree" makes
sense even if X’ is not reduced, by looking at Hilbert polynomials.
Now, any representation V of G can be embedded (injectively) in

R (D R ~ ··· (DR, and therefore F(X’) V is contained in a direct sum
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of several copies of F(X’)R. To prove that F(X’) V is essentially finite,
it would suffices to show that F(X’)R is finite, by (a) of Prop. 3.7. But

R  R is isomorphic to R~R~···~R n times, from which, if

W = F(X’)R, [W]2 = n[W], concluding the proof of the proposition.
For the rest of this section, we shall fix a k-rational point x of X, and

denote by x*:Y(X)~k-mod the functor which associates to a sheaf
on X its fibre at the point x. Note that x * is faithful and exact when
restricted to the category of semistable bundles. It is now obvious that

(EF(X), Q9, x *, (lx) is a Tannaka category. By Theorem 1.1, this

determines an affine group scheme G such that G-mod can be

identified with EF(X) in such a way that x * becomes the forgetful
functor. We shall call the group scheme G above the fundamental
group scheme of X at x, and denote it by 03C0(X, x).
For a subset S of Obj EF(X), let S* = {V*: V e SI. Let SI =

S U S*, and S2 = {V1~ V2 ···~Vm : V1 ~ S1}. Let EF(X, S) = S2.
Exactly as before, this determines an affine group scheme which we
call 03C0(X, S, x ), such that

is an equivalence of categories. Let FS be the inverse of Gs ; then Fs
can be regarded as a functor from w (X, S, x )-mod to 9(X) such that
the composite xi Fs is the forgetful functor. In particular, by Prop.
2.9, there is a principal ir (X, S, x)-bundle Xs on X such that F, =
F(Xs). By Prop. 2.9(a), the functors x * . Fs and F(s |x) coincide, and
by Prop. 2.9(b), there is a natural isomorphism of Xs|x with G (as
G-spaces), which is of course equivalent to specifying a k-rational
base point xs of Xs|x.
Now, if S is a subset of Q, there is a natural homomorphism of

Tannaka categories from EF(X, S ) to EF(X, Q), which by Theorem
1.3, determines a natural homomorphism p0 from 03C0(X, Q, x) to

03C0(X, S, x ), and by Prop. 2.9(c), it follows that As is induced from XQ
by the homomorphism 03C1QS.

LEMMA (3.9): Let S be a finite collection of finite vector bundles. Then
03C0(X, S, x ) is a finite group scheme.

PROOF: Let W be the direct sum of all the members of S and their

duals. Then W is a finite vector bundle, and by Lemma 3.1, S(W) is
finite. Note that S( W) generates the abelian category EF(X, S) in the
sense of § 1, and therefore, by Theorem 1.2, w (X, S, x ) is a finite group
scheme.
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PROPOSITION (3.10): Let S be any finite collection of essentially finite
vector bundles. Then, there is a principal G-bundle X’ on X, with G a
finite group scheme, such that the image of F(X’) : G-mod ~ Y(X)
contains the given collection S.

PROOF: For each W E S, choose V such that W is a quotient of a
semistable subbundle of V, and V a finite vector bundle. Let Q be the
collection of the V as constructed, and note that S is a subset of

Obj EF(X, Q).
Put G = 7r(X, Q, x ), and X’ = XQ. By Lemma 3.9, G is a finite group

scheme. Let GQ, as above, be the equivalence of categories, from
EF(X, Q ) to 03C0(X, Q, x )-mod, and then, we know that F(X’) - GQ(V) =
V, for all objects V of EF(X, Q), thus proving the Proposition.
For S = Obj EF(X), we shall denote Xs, Gs, Fs, ks by X, G, F, je

respectively.

DEFINITION: The principal 03C0(X, x )-bundle X is the universal cover-
ing scheme of X.
The universal property possessed by 03C0(X, x ) and X is given by the

following:

PROPOSITION (3.11): Let (X’, G, u) be a triple, such that X’ is a

principal G-bundle on X, u a k-rational point in the fibre of X’ overx, and
G is a finite group scheme.
Then there is a unique homomorphism p : 7r (X, x) - G, such that

(a ) X’ is induced from X by the homomorphism p, and
(b ) the image of i in X’ is u.

Consequently, there is a bijective correspondence of the above triples
with homomorphisms p : 7T(X, x) ~ G.

PROOF: By Prop. 3.8, F(X’) is a functor from G-mod to EF(X).
Now EF(X) is identified with 03C0(X, x)-mod in such a way that the

forgetful functor Tk on 03C0(X, x)-mod is equivalent to the functor x *
from EF(X) to k-mod. Thus, the composite Tk · F(X’) is simply
xi F(X’) = F(X’|x), by Prop. 2.9(a). Now, the k-rational point u of
X’|x gives a unique isomorphism cp : G ~ X’|x of principal homogene-
ous spaces such that ~(1) = u. By Prop. 2.9(b), ~ determines a natural
equivalence of the functor F(X’|x) with the forgetful functor from
G-mod~k-mod. This information yields a morphism (of Tannaka
categories) from G-mod to 03C0(X, x )-mod, which, by Theorem 1.3, is
induced by a homomorphism p : 7r (X, x) ~ G. We now appeal to Prop.
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2.9(c) to settle the fact that X’ is indeed induced from X by p, and that
the image of x in X’ is u. The uniqueness of p is easily checked.

CONCLUDING REMARKS:

(1) With S as in Lemma 3.9, assume that 03C0(X, S, x)-mod is a

semisimple category. Then, for any representation W of 03C0(X, S, x),
there exist polynomials f and g, with f ~ g, the coefficients of f and g
being non-negative integers, such that f(W) and g ( W ) are isomorphic.
This follows from the fact that there are only finitely many indecom-
posable representations of 03C0(X, S, x) up to isomorphism. Putting
V = F(XS)W, it follows that V is a finite vector bundle.
In characteristic zero, any finite group scheme is reduced, and its

representations certainly form a semisimple category. By Prop. 3.10, it
follows therefore that in characteristic zero, any essentially finite vector
bundle is finite.

(2) The structure of the fundamental group scheme:
(a) For S C Q C Obj EF(X),

is surjective.

(b) 03C0(X, x ) is the inverse limit of 03C0(X, S, x ), where S runs through
all finite collections of finite vector bundles on X; consequently
03C0(X, x) is the inverse limit of finite group schemes.

Both (a) and (b) follow from standard facts about Tannaka

categories, for which we refer the reader to [2].
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