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1. Introduction

Maxson [10] has given sufficient homological conditions for a unital
near-ring R to be semi-simple, conditions which in the case of rings are
also necessary. One of these conditions is that every R-module M be

injective, another is that every M be strictly projective (see definition
2.3). Now the category of groups, viewed as the near-ring modules over
the integers, is an example where there exist no non-trivial injective or
strictly projective modules. In this paper we define alternate forms of
"injectivity" which give necessary and sufficient conditions for all

modules over a near-ring to be semi-simple. We also prove that
non-trivial injectives do not exist in the category of near-ring modules
over R for any R and discuss the possibilities in categories of unital
near-ring modules. Finally the injectivity conditions are related to
essential extensions.
With the exception of Thm. 2.6, all modules M will be unital left

modules over the unital right near-ring R where R satisfies x · 0 = 0 for
afi x (see e.g. [3], [6] for basic terminology). We use the term
"R-subgroup of M" to mean a subgroup of (M, +) closed under left
R-multiplication, and "R-submodule" to mean a normal R-subgroup A
satisfying r(m + a) - rm E A for all r E R, m E M, a E A. M is simple
if it has no proper non-zero R-submodules and irreducible if it has no

proper non-zero R-subgroups. The R-submodules of R are called left
ideals. The words injective and projective are used in the usual
categorical sense.
By the phrase "in the d.g. case" we mean (see [6]) that (R, +) is

generated by a multiplicative semigroup S of left distributive elements
and the category of (R, S )-modules consists of all unital left modules M
such that s (x + y ) = sx + sy for all s E S, x, y E M. Thus the category
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of groups is an example of a "d.g. case" with R = Z and S = {1}. Note
however, that if S is taken to be R = Z itself the (R, S)-modules are
just the abelian groups. In this paper it may be assumed that S is a

minimal distributive generating semigroup of R whereas in [2] results
have been obtained assuming S is the set of all distributive elements of
R.

Since references [3] and [10] are not easily available, proofs have
been sketched for results taken from these sources.

2. Injectivity

We begin with the following definitions and results, some taken from
[10].

DEFINITION 2.1 [10]: (a) An R-homomorphism f : M ~ N is normal if
f (M) is an R-submodule of N. (b) An exact sequence M ~ N ~ 0 splits
if there exists a normal g : N - M such that fg = 1N. (c) The short exact
sequence (s.e.s.) 0 ~ L ~ M ~ N ~ 0 splits if the sequence M - N - 0
splits. (d) The exact sequence 0 - L 1 M splits if there exists g : M - L
such that gf = 1L.

If L and N are R-submodules of M such that M = L + N and

L ~ N = 0 we write M = L ~ N.

LEMMA 2.1 [10]: The following are equivalent.

(a ) The s.e.s. 0 ~ L ~ M ~ N ~ 0 splits.
(b) M = h (L) ~ g (N) ~ L ~ N where g is the normal splitting map for
f.
(c ) The exact sequence 0 ~L~ M splits.

PROOF: (a)~(b) If g : N ~ M is the normal splitting map then fg = 1N
and g (N) is an R-submodule of M. For all m E M, f(m - gf(m» = 0 so
m E ke f + g (N). It is easily checked that ke f f1 g (N) = 0 so M =
ke f ~g(N). Since the sequence is exact at M ke f = h (L ) so M =

h(L)~g(N). Moreover since both h and g are monomorphisms,
M~L~N.
(b) ~ (c) For all m E M, m = h(x)+g(y), x E L, y ~ N. Define k : M ~
L by k(m) = h-1(g(y)). Then kh = 1L.
(c) ~ (a) Let k : M ~ L be such that kh = IL. As in the first part of the
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proof, M = h (L) + ke k and h(L)nkek = 0. Since L = h (L ) = ke f, L
is an R-submodule of M so M = h(L)~ke k = ke fEt)ke k. Therefore

N = f(m) = f(ke k). If f i is the restriction of f to ke k, it is an

isomorphism. Putting g = (f1)-1 we have g (N) = ke k so g is normal

and clearly fg = 1N.

DEFINITION 2.2: The s.e.s. 0 ~ L ~ M ~ N ~ 0 almost splits if there
exists g : N - M (not necessarily normal) such that fg = 1N.

DEFINITION 2.3 [10]: The module P is strictly projective if every
s.e.s. 0- L - M - P - 0 splits.

PROPOSITION 2.2 [10]: Every strictly projective module is projective in
the d.g. case.

PROOF: It is shown in [6] that in the d.g. case every module P is a
factor of a free module F. Thus F - P - 0 is exact, and if P is strictly
projective, the sequence splits. Hence F ~ P @ Q for some Q and by
the usual argument ([6]) a direct summand of a free module is

projective.
The question arises as to the existence of strictly projective mod-

ules. Maxson shows [10, p. 53] that a free group A is not strictly
projective as follows: Let G be the free group sum of A with itself.
Then there is a s.e.s. 0-K - G iA -0 where K is the normal

subgroup of G generated by A. Since A is free it is projective. If the
splitting g : A ~ G were normal we would have G = Im g Et) ke f. But a
group cannot be both a free sum and a direct sum. Hence A is not

strictly projective.
Now since free groups are the only projective groups [5], we

conclude by Prop. 2.2 that there are no strictly projective groups.
Dualizing definition 2.3 we have

DEFINITION 2.4: A module I is loosely injective if every s.e.s.

0 ~ 1 ~ M ~ N ~ 0 splits.
Finally, it is useful to distinguish two other forms of "injectivity."

DEFINITION 2.5(a) I is n-injective (for "normal-injective") if for

every diagram
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of R-modules and R-module homomorphisms in which g is normal,
there exists h : B ~ I such that hg = f.
(b) I is called almost injective if every s.e.s. 0 ~ 1 ~ M ~ N ~ 0 almost

splits.

PROPOSITION 2.3: (1) 1 is injective ~ (2) 1 is n-injective ~ (3) 1 is
loosely injective ~ (4) 1 is almost injective.

PROOF: (1) ~ (2) and (3) ~ (4) follow directly from the definitions.
(2) ~ (3) If 0 ~ 1 ~ M ~ N - 0 is a s.e.s., then f is normal since

Im f = ker g. Since I is n-injective there exists h : M ~ I such that

hf = 1,.

Examples : In the category of groups, (regarded as Z-near-ring mod-
ules)
1. There are no non-trivial injectives [5].
2. If G is n-injective then every diagram of the following type

can be completed. Thus for every n F- Z and x E G there is an

h : Z ~ G such that h (n ) = x i.e. h (1)" = x. Therefore G is a divisible
group.
3. G is loosely injective iff G is a direct summand of every group in
which G is a normal subgroup. Equivalently G is a complete group [1,
Thm. 1] i.e. G has trivial center and every automorphism is inner.
Since S3 is complete but not divisible, this class properly contains the
class of n-injectives.
4. G is almost injective iff G has trivial center and 0 ~ Inn G ~

Aut G - K - 0 almost splits [11, Thm. 2.7].
In general we say the module M is the semi-direct sum of its

R-subgroups A and B, and write M = A + B if A is an R-submodule,
M = A + B and A n B = (0). In this case B is called a semi-direct

summand of M. Then every m can be expressed uniquely as a + b for
some a E A, b E B. Moreover the canonical projection p : M ~ B

given by p (a + b ) = b is an R-homomorphism since p (a + b + a +
bl)=p(a +b+a1-b +b +bl)
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Also r (a + b ) = r (b + a1) since A is a normal subgroup and r (b + a1) -
rb E A since A is an R-submodule so by uniqueness, r(b + a1) =
a’ + rb for some a’ and therefore p(r(a+b)) = p(a’+rb) = rb =
rp(a+b).

PROPOSITION 2.4: (a ) If M = A + B, and M is n-injective then so is B.
(b) If M = A (3) B and M is loosely injective, then so are A and B.

PROOF: (a) A diagram

where g is normal

can be embedded in a diagram

where p and i are the canonical projection and injection associated
with M = A + B, so pi = 1B. Since M is n-injective there exists
h : Y - M such that hg = if and ph is the required map Y - B.
(b) Consider a s.e.s.

f (a + b ) = (f (a ), b ) and K is the quotient module to make the sequence
exact (the normality of f yields the normality of f ). Since this splits by
hypothesis, P  B = A ~ B ~ K. Identifying P with P * = P x 0 in
P x B every p E P can be expressed uniquely as p = a + b + k. Hence
- a + p = b + k ~ P * ~ (K ~ B) = Y say. Thus P * = A (DY and so
A is a direct summand of P as required. The argument is symmetric
f or B.

COROLLARY: A direct summand of a complete group is complete.

LEMMA 2.5: If the s.e.s. 0 ~ L ~ M ~ N ~ 0 almost splits then

M =L+N.
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PROOF: This is almost identical to the proof that (a) ~ (b) in lemma
2.1. This time however the splitting map g : N - M is not necessarily
normal so N = g (N) is in general only an R-subgroup of M and the
sum L + N is only semi-direct.
We now drop the requirement that modules be unital (though R may

be) and show there are no injectives in this category. To do this we
need to embed any group G in a simple group of arbitrarily high
cardinality. The procedure of Baer [5] for embedding a group in a
simple group does not sufHce but there is an alternate method due to
Karrass and Solitar [8]. We may assume G is infinite for otherwise it
can be embedded by Cayley’s Theorem in a finite symmetric group and
hence in an infinite symmetric group.

If p is an infinite cardinal whose s,,.iccessor is denoted p *, let S (p )
denote the full symmetric group on a set X of cardinality p, and
Sp = {03C3 ~ S(p)|#{x|03C3(x)~x}p}. Then ([8]) S*p/Sp is a simple
group of order 2p which contains copies of all groups of order p.

Iterating this procedure gives a distinct chain of simple groups (distinct
because the orders are strictly increasing) containing a group of order
P.
Now let R be a near-ring with underlying group (R, +). If G is a

group containing R, G has a natural R-module structure given by

THEOREM 2.6: There are no injective R-modules for any near-ring R.

PROOF: Suppose I is injective. We reach a contradiction by showing
I has to contain simple R-modules of arbitrarily high cardinality. Let G
be any simple group containing (R, +) and endow it with its R-module
structure. It remains simple as an R-module, for any R-submodule is a
normal subgroup. If x ~ 0 is arbitrarily chosen in I the map f : R ~ I
given by f (r) = rx is an R-homomorphism well-defined on the cyclic
R-subgroup R of G. Since I is injective, this can be extended to all of
G. Since G is simple the extension map has no kernel so G is an
R-subgroup of I. Since we can find such simple G of arbitrarily high
cardinality, the proof is complete.
The theorem is false in general for categories of unital R-modules as

shown in [2]. However that example is a category of (R, S)-modules
with S = all distributive elements of R, and the existence question
remains open in the general (unital) d.g. case as well as the (unital) non
d.g. case.
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3. Semi-simplicity

There are several equivalent conditions for a semi-simple module.

PROPOSITION 3.1 ([3]): The following are equivalent (M is called
semi-simple).

(a) Every R-submodule of M is a direct summand.
(b) M is a sum of simple submodules.
(c) M is a direct sum of simple submodules.

DEFINITION: The near-ring R is semi-simple if RR is a semi-simple
module.

PROOF: The proof parallels the usual ring theoretic proof as found
e.g. in [9, p. 59-61].

Similarly the following proposition is easily verified following ring
theoretic proofs.

PROPOSITION 3.2: (a) [3, Cor. 4.14] A factor module of a semi-simple
module is semi-simple.
(b) [3, p. 63] An external direct sum of simple modules is semi-simple.

THEOREM 3.3 (cf. [ 10, Thm. II 2.9]): The following are equivalent for a
near-ring R.

(a) Every M is n-injective.
(b) Every M is loosely injective.
(c) Every M is strictly projective.
(d) Every s.e.s. of R-modules splits.
(e) Every M is semi-simple.

Each of these implies
(f) R is semi-simple.

PROOF: (a) ~ (b) by Prop. 2.3 (c)~(d)~(e) ~(f) by [10, Thm. II,
2.9].
(b) ~ (c) If M À P ~ 0 is exact, then so is the s.e.s. 0 ~ ker f ~ M -
P -+0 which, by (b), splits.
(e) ~ (a) Given

with g normal

then by (e) B = A~C for some C so we can define h : B - M by
h(a + c) = f (a). ’ 
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It remains an open question whether R semi-simple ~ every R-
module is semi-simple. We do have the following partial results.

PROPOSITION 3.4: (a) R is semi-simple iff every direct sum of cyclic
R-modules is semi-simple.
(b) If every R-subgroup of M is an R-submodule then R semai-simplet
M semi-simple.

PROOF: (a) (~) Since 1 E R, R is cyclic.
(~) Let Ann m = {r E R /rm = 01. If M = Rm then M = R /Ann m so
by Prop. 3.2(a), R semi-simple ~ M semi-simple. By Prop. 3.2(b) every
direct sum of semi-simple modules is semi-simple.

n

(b) (Cf. [3, p. 74]) Since R is semi-simple, R = ~Ji where the Ji are

simple R-submodules of R. If m E M then Jim is an R-subgroup of M
which by hypothesis is an R-submodule. The mapping 03C8:Ji ~ Jim
given hy tf¡(j) = jm is an R-module homomorphism and since Ji is

simple, either Jim = Ji or Jim = 0. Thus M is the direct sum of the
nonzero Jim which are simple R-submodules of M.
Recently Choudhary and Tewari [4] have given several equivalent

conditions for a near-ring to be strictly semi-simple. The above results
yield a comparable theorem in the semi-simple case. (Thm. 3.6) For
comparison we first rephrase their theorem in our terminology.

THEOREM 3.5 [4]: If R is a near-ring with right identity the following
are equivalent (R is called strictly semi-simple).

(a) R is a direct sum of irreducible left ideals.
(b) Every R-subgroup of a cyclic R-module is a semi-direct sum -

mand.

(c) Every R-subgroup of R is a semi-direct summand.
(d) If L1, L2 are R-subgroups of R and 0 ~ L1 ~ L2 is exact, then it

splits.
(e) If L1, L2 are R-subgroups of R with Li ~L2 then every R-

homomorphism of Li into any M can be lifted to L2.
(f) R has the d.c.c. on left ideals and J(R) = 0.

(g) R has the d.c.c. on R-subgroups and no nilpotent nonzero
R-subgroup.

Here J(R) = fl fleft ideals which are maximal R-subgroups}.

THEOREM 3.6: If R is a unitary near-ring, the following are

equivalent :
(a) R is a direct sum of simple left ideals.
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(b ) Every R-submodule of a cyclic R-module is a direct summand.
(c) Every left ideal of R is a direct summand.
(d) For every left ideal L and R-subgroup L of R the exact sequence

0 - L - L 1 splits.
(e) If L is a left ideal and L an R-subgroup of R such that L CL,,

then every R-homomorphism of L into any M can be lifted to L1.
( f ) R has the d.c.c. on left ideals and N(R) = 0. Here N(R) = n

{maximal left ideals.

PROOF: (a) ~ (b) By Prop. 3.4(a) every cyclic R-module is semi-
simple so by Prop. 3.1 every R-submodule of a cyclic R-module is a
direct summand.

(b) ~ (c) R is a cyclic R-module in the unital case so by (b) every
R-submodule (i.e. left ideal) is a direct summand.
(c) ~ (a) This is part of Prop. 3.1.
(c) ~ (d) Since L is a direct summand of R, R = L~K with canoni-
cal projection p:R ~ L. The restriction of p to L 1 is the required
splitting.
(d) ~ (e) If f : L ~ M is an R-homomorphism and g : L1 ~ L is the

splitting for 0 - L 4 Li where i is the inclusion map, then fg is the

required lifting since for all x E L fg (x ) = fgi (x ) = f (x ).
(e) ~ (c) If L is any left ideal, the identity map on L can be lifted (by
(e)) to all of R. Thus 0 - L 1 R splits and so by lemma 2.1 L is a direct
summand of R.

n

(a) ~ (f) R = ~Ji, 1ï simple ~ R has d.c.c. on left ideals. Put Si = ~Ji.
i iÉj

Then N(R ) C ~ Sj = 0.
(f) ~ (a) (Cf. [3, p. 87]) Let S be the family of all finite intersections of
maximal left ideals. By d.c.c. let C be a minimal element, so for every
maximal left ideal B, B ~ C = C i.e. C C B. Therefore C C N(R ) = 0.

n

Write 0 = C = Si where the Si are maximal left ideals such that

Ci = ~ Sj ~ 0 for all i. By maximality, R = Ci ~ Si so by [3, p. 86]

R Ci. Since Ci ~ R IBi, the Ci are simple.

Example Let G be a finite nonabelian group and let E(G) be the
unital near-ring d.g. by the endomorphisms of G. Then E (G ) is finite so
has d.c.c. on left ideals. Johnson [7] has shown that if G is the sum of
its minimal fully invariant subgroups then N(E(G)) = 0. Thus for such
G, E(G) is semi-simple.



52

The question arises as to when a semi-simple near-ring is strictly
semi-simple (the converse clearly is always true). It is known (see [3])
that a semi-simple module is strictly semi-simple if every maximal

R-submodule is a maximal R-subgroup.

PROPOSITION 3.7: A semi-simple near-ring R is strictly semi-simple if
every non-zero R-subgroup contains a non-zero R-submodule (left
ideal ).

PROOF: Let L 1 C L2 be R-subgroups and f : L1 ~ M. By hypothesis
there is a left ideal L c Li. f can be restricted to L and by Theorem
3.6(e) extended to L2. Thus by Theorem 3.5(e) R is strictly semi-
simple.

REMARK: For rings, a module M is injective iff it satisfies Baer’s
condition, namely every homomorphism f : L - M for L a left ideal of
R, can be extended to R. For near-rings, this is not apparently true for
n-injectives, but Theorem 3.6 shows that R is semi-simple iff every M
satisfies Baer’s condition.

In this connection it can be noted that the Theorem of [13] to the
effect that in the d.g. case a module M is injective iff it satisfies Baer’s
condition, is false. (This is also noted in [2]) A counter-example is
provided by the category of groups which has no injectives but in
which the divisible groups satisfy Baer’s condition.

4. Essential extensions

DEFINITION 4.1 [10]: The R-module M is an essential (resp. strictly
essential) extension of its R-submodule A if K ~ A 0 (0) for all

non-zero R-submodules (resp. R-subgroups) K of M.
In standard module theory the injective modules are precisely those

with no proper essential extensions. The analogous results for near-
rings are:

PROPOSITION 4.1: If A is loosely injective (resp. almost injective)
then A has no proper essential (resp. strictly essential) extensions.

PROOF: Suppose M is an essential extension of A, so we have a s.e.s.
0 ~ A ~ M ~ B ~ 0. This splits (resp. almost splits) by hypothesis so
by lemma 2.1 M is a direct sum (resp. by lemma 2.5 M is a semi-direct
sum) of A and B. Thus A n B = (0) where B is an R-submodule (resp.
R-subgroup) of M.
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COROLLARY: If A is n-injective, it has no essential extensions.
As a pseudo converse to this corollary we have

PROPOSITION 4.2: If A is an R-submodule of an n-injective module I
and A has no essential extension, then A is n-injective.

PROOF: (Cf. [9, Prop. 8, p. 91]) Let A’ be an R-submodule of I
maximal with respect to the property A ~ A’ = (0). Then A + A’/A’ ~
A is an R-submodule of I /A’ and we show this is an essential

extension. It will follow that I/A’ ’=A+A’/A’soJ=A@AB Since I
is n-injective, so is A by Prop. 2.4(a).
Now if there is an R-submodule K with A’ C K C I such that

K/A’nA+A’/A’=(0), then K n (A + A ’ ) c A ’ so K ~ A ~ A ’ ~

A = (0) so by the maximality of A’, K = A’ . Thus I /A’ is essential

over A as claimed.

In view of this proposition, it would be nice to know if every A is an
R-submodule of an n-injective module (for some near-rings R ). In the
case of groups, this means knowing whether every group can be
embedded as a normal subgroup of an n-injective group. Now, the
class of n-injective groups is not known, but an n-injective group is
both divisible and complete. It is known that every group is a subgroup
of a divisible group [12, p. 99] and of a complete group, namely a full
symmetric group. This suggests trying to drop the normality require-
ment in the proposition. This can be done, but at the expense of
changing the essentiality condition. The revised result is

PROPOSITION 4.3: If A is an R-subgroup of an n-injective module I,
and A is not essential in any R-module containing it as a proper

R-subgroup, then A is n-injective.

PROOF: Similar to Prop. 4.2. This time A + A’/A’ is an R-subgroup
instead of an R-submodule of I /A’ . Then I = A’ + A so Proposition
2.4(a) can still be used.
Because Proposition 2.4(b) was not proven for semi-direct sums, but

only direct sums, it is not possible to give such a rewording of the next
proposition.

PROPOSITION 4.4: If A is an R-submodule of a loosely injective
module I and A has no proper essential extension then A is loosely
injective.

PROOF: As for Proposition 4.2, but invoke Proposition 2.4(b) in place
of Proposition 2.4(a).
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