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1. Introduction

In this paper we will describe a transfer construction for (Hurewicz)
fibrations which is a generalization of that for fiber bundles studied in
[4,5]. We suppose given a commutative triangle

where p : E ~ B is a fibration having fiber F a finite complex and base
B a connected finite dimensional complex. With this data we show that
there is an S-map, which we call a transfer map,

having the property that

is multiplication by the Lefschetz number A of f’ : F ~ F, the restric-
tion of f to the fiber. (Although f’ is not unique we allow this abuse of
language since A is independent of the choice of f’.)
The existence of T(f ) severely restricts the projection map of the

fibration. For example

is a split epimorphism for any (pointed) finite dimensional complex X.
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We will show that the boundary map w : QB - F arising from the

Puppe sequence of the fibration p : E - B is also restricted by the
transfer. Precisely, we have

(1.1) THEOREM: Assume that F is connected. Then

is trivial for any finite dimensional complex X.

An independent method of extending the notion of transfer from
fiber bundles to fibrations is given in [7]. The method which we
describe here is intrinsic and has the advantage that many basic
properties of the transfer are easily derived. A. Dold [9] has also

independently defined the transfer, placing somewhat different restric-
tions on the projection p and fiber preserving map f.
The outline of the paper is as follows. In section 2 we give a

homotopy characterization of the Lefschetz number of a map. Al-
though an elementary fact it is the key point in defining the transfer. In
section 3 we deal with some homotopy properties of ex-spaces and in
section 4 with the duality theory of ex-spaces. This generalization of
Spanier-Whitehead duality is purely formal except for the question of
the existence of dual ex-spaces (theorem 4.2). In sections 5 thru 7 we
define the transfer and establish its basic properties. In section 8 we
prove theorem (1.1) mentioned above and describe some consequences
of the theorem. In section 9 we consider smooth fiber bundles and in

this case ive give a more geometric description of the transfer.

2. The Lefschetz number

Suppose that F is a finite complex with base point and f : F - F is a
base point preserving map. By the reduced Lefschetz number of f we
mean

Let 1£ : S s ~ F A F be a duality map in the sense of Spanier [15].
Then F A F is 2s-self dual via the map
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where a (x A y A x’ A y’) = x’ A y A ~ 039B y’. Denote this composite by v
and let il : F 039B F ~ S5 be dual to it relative to v. The following lemma
provides a homotopy description of the reduced Lefschetz number of
f. It is the analogue for base point preserving maps of the Lefschetz
fixed point theorem given by Dold [8, theorem (4.1)].

PROOF: We have the following homotopy commutative diagram

Let Q denote the rational numbers and choose a generator y E
Hs(SS; Q). Let lu,l be a basis for H*(F; Q) and {vp} a basis for
H*(F; Q). Let d(up) and d (vp) denote respectively the dimension of u,
and vp. Write

and

Let A = |aijl, B = Ibij 1, and D = |(-1)|d(ui)03B4ij|| where Si; is the

Kronecker symbol. By (2.2) we have

By expressing each side in terms of the basis elements y 039B ui 039B vj and

equating coeflicients, we obtain the relation A = DAB TA. Since A is

non-singular AB T = D.
Now suppose that f*(ui) = ¿k cikuk. We have

This completes the proof.
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3. Ex-spaces

Consider a trivial fibration p : F ~ * and a map f : F - F, where F is a
finite complex. In this case the transfer map we seek is to be of the
form 03C4(f): Ss ~ S 039B F+, for large s, and is to have the property that

To construct r (f ) let g : Ss ~ F+ A F be a duality map and take r (f ) to
be composite

Then it is immediate from the preceding lemma that p03C4(f) has degree
Af.

In order to define 03C4(f)  in general we intend to carry out the above
construction "fiberwise". This leads naturally to the consideration of
ex-spaces and duality for ex-spaces. In this .section we discuss some
aspects of the homotopy theory of ex-spaces and in the following
section we deal with duality proper.
We shall work entirely in the category of compactly generated spaces

[17]. Recall that an ex-space [13] E = (E, B, p, a ) consists of maps
p : E ~ B and ~ : B ~ E such that pd = 1. We assume throughout that
B is a CW-complex and E has the homotopy type of a CW-complex.
An ex -map f : E - E’ is one which is both fiber and cross-section

preserving, i.e. p’ f = p and f~ = ~. The set of ex-homotopy classes of
ex-maps from E to E’ is denoted by [E ; E’].
An ex-space E is an ex-fibration if there is a lifting function

with the property that 0393 (0394 ( b ), 03C3) = 039403C3, when a is a path in B
beginning at b. We will also need the notion of a well based ex-space as
in [13]. E is well based if there is a vertical retraction map E x I -

E x {0}U0394(B) x I. 
If p : E ~ B is a map we have an associated ex-space E =

(E, B, p, 0394) where E is the disjoint union of E and B and p and 4 are
the obvious maps. Observe that È is well based, and if p : E - B is a
fibration, E is an ex-fibration.

If X is a pointed space we will also use X to denote the ex-space
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(X &#x3E; B, B, p,0394) where p is projection on the second factor and à is

the cross section determined by the base point.
The fiberwise reduced product of ex-spaces E and E’ is denoted by

E A,, E’. Let r : E x B E’ ~ E ÂBE’ denote the identification map. Be-
cause of the exponential law in the category of compactly generated
spaces, r x 1 :(E XB E’) x Y ~(E ÂB E’) x Y is an identification for

any space Y. From this it is easy to see that r XB 1 : (E X B E’) XB Y -

(E 039BB E’) X B Y is an identification for any space Y over B. With this

last observation it is easy to prove the following.

(3.1) LEMMA: If E and E’ are well based so is E ÂB E’. If E and E’
are ex-fibrations so is E ÂBE’.

(3.2) THEOREM: (Comparison theorem): Let E and E’ be ex -

fibrations and suppose g : E - E’ is such that its restriction to the fiber
over b, gb : Fb ~ Fb is an n -equivalence, b E B. Let X be a well based
ex -space. Then g# : [X ; E] ~ [X ; E’] is injective if X is n -coconnected
and surjective if X is (n + l)-coconnected.

The proof is the same as the proof given for bundles in [1; theorem
3.3]. For other versions of the comparison theorem, see Eggar [11;
Theorem 3.9] and James [14; Theorem 3.2].

(3.3) COROLLARY: Suppose that E and E’ are well based ex-

fibrations and g : E ~ E’ is such that gb : Fb ~ F’b is a homotopy
equivalence, b E B. Then g is an ex-homotopy equivalence.

Given E = (E, B, p, 0394) let DB (E) denote the space of loops 0" : I - E
such that 03C3(I) C Fb for some b E B, and 03C3(0) = 03C3(1) = 0394 (b). We have

bY f2 (p )(03C3) = p (03C3(0)) and 03A9 (0394)(b) == L1 (b) = 0394 (b )* 2014 the constant loop
at à (b). If E is an ex-fibration so is f2B (E) as is easily checked.
There is the suspension map

by f ~ 1 039B f. By a standard argument involving the comparison theorem
and the loop space DB (S 1 039B E’), we obtain the following suspension
theorem (c.f. [1; Theorem 3.14] or [14; Theorem 4.3]).
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(3.5) THEOREM: Suppose that E’ is an ex-fibration such that each
fiber Pb, is (n - l)-connected. Let E be well based. Then 03C3 is injective if
E is (2n - l)-coconnected and surjective if E is 2n -coconnected.

Let

with the natural abelian group structure. The cone over E is C(E) =
I As E with 0 the base point of 1.

Suppose that A is a subcomplex of B. Let EA = p -1(A ) U ~ (B)
regarded as an ex-space of B. Then, as in [13], we have an exact

sequence

Let E /EA be the quotient of E obtained by identifying each fiber of
EA to its base point and let c : :E U C (EA) ~ E /EA denote the natural

map. Note that if E is well based so are EA, E /EA and E U C (EA ).

(3.7) LEMMA: If E and E’ are ex-fibrations and E is well based then
c#:[E/EA ; E’] ~[E U C(EA);E’] is bijective.

A proof is given in section 10. Now if E and E’ meet the

requirements of the lemma we may replace {E U C(EA); E’l in the
above sequence by JE IE,, ; E’} via c# and so obtain an exact sequence

4. Duality

In this section we will outline Spanier-Whitehead duality theory in
the category of ex-spaces. Some aspects of this theory have been dealt
with by K. Tsuchida [ 18]. We restrict ourselves to ex-spaces which are
well based ex-fibrations having base B a finite dimensional complex
and each fiber homotopy equivalent to a finite complex. Briefly, we will
refer to such ex-spaces as ex-fibrations.

An ex-map 03BC :Ss x B ~ E 039BB Ê is a duality map if for each b E B

the restricted map g, : :Ss ~ Pb 039B Fh is a duality map in the usual sense.
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Given such a duality map and ex-fibrations X and Y we have

defined by sending f : Sk + q 039B X 039B E ~Sk 039B Y to

and

by sending f : Sk + q A Ê A X ~ Sk A Y to

(4.3) LEMMA: D03BC and DM are isomorphisms.

This follows from the corresponding fact for pointed spaces if all the
ex-spaces involved are products. The proof in general is by induction
over the skeleta of B using the exact sequence (3.8). The argument is
standard and will be omitted.

If v : S s x B ~ X 039B X is a second duality map we have, as in the case
of pointed spaces, an isomorphism

defined so as to make the following diagram commutative

In particular, f : E - X is dual to g : X ~ Ê relative to g and v if and
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only if the diagram

is stably homotopy commutative.

(4.7) THEOREM: If E is an ex - fibration there is an integer s, an

ex -fibration Ê, and a duality map IL : S x B - E A Ê.

A proof is given in section 11.

5. Transfer

Let JF denote the category of fibrations p : E ~ B such that B is a
finite dimensional complex and each fiber is homotopy equivalent to a
finite complex. We consider commutative triangles

where p : E ~ B is in #. We will construct for such a triangle and for A
a subcomplex of B a transfer map, which is an S-map

Here EA = p -1(A).
Consider the ex-space E, the disjoint union of E and B. Since E is an

ex-fibration in the sense of section 4, there is an ex-fibration Ê and a
duality map

Analogous to the situation for pointed spaces (see section 2), E A E is
canonically 2s-self dual. Let
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be dual to g. We have

which takes SS x A U so x B into Ss x EA U so x B.

Identifying these subspaces to a point, the above map yields

We will show now that the S-homotopy class of 03C4(f) is well defined.

Firstly, if g is replaced by a suspension, this has the effect of replacing
03C4(f) by its suspension. Suppose now that

i = 1, 2, are given and h : E1 ~ E2 is a fiber homotopy equivalence such
that hf 1 = f2h. Let

be duality maps and let k : Ê2~ Ê1 be dual to h. Then k is an

ex-homotopy equivalence and we have commutativity relations

where the second triangle is obtained by dualizing the first. The

following diagram is then commutative.
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Therefore h03C4(f1) = T(/2). Taking h to be the identity we see that 03C4(f)
does not depend on the choice of duality map and moreover, 03C4(f)
depends only on the fiber homotopy class of f.
We also established the following functorial property
(5.3) With the data (5.2) if h : E1 ~ E2 is a fiber homotopy equivalence

such that hfl 1 is fiber homotopic to f2h then h03C4(f1) = 03C4(f2).
Now suppose we are given

and a map g : X ~ B. There is the pullback diagram

and the induced triangle

(5.4) We have g03C4(f ) = 03C4(f)g.
This is easily checked.
We may form the sum and product of the triangles in (5.2) obtaining

where + denotes disjoint union.

These properties follow from standard properties of duality maps as
generalized to ex-spaces.
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(5.7) For the triangle

03C4(1) : B/A ~ B /A is the identity m ap.

6. Products

We consider now the multiplicative properties of the cohomology
homomorphism induced by the transfer. We have a commutative
diagram

where d is the diagonal map. From (5.3), (5.4), (5.6) and (5.7) we obtain,
for subcomplexes A and C of B, a cummutative diagram

Let M be a ring spectrum and N an M-module as in [19]. From the
commutativity of the above diagram we obtain the formulas
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Now consider the triangle

In the diagram

the composite (1 A 03BC)(( 1, f+) A 1)03BC represents 03C4(f). Hence, by lemma
(2.1) and the commutativity of the diagram we have (identifying pt.+
with S°).

(6.5) p03C4(f) : S° ~ S° has degree Ã (f+) = ll (f ) - the Lefschetz number
of f.
We can now establish the fundamental property of the transfer.

Consider

with p : E ~ B in #. Let fb : Fb ~ Pb denote the restriction of f to the
fiber over b E B and let A denote the Lefschetz number of fb. Let
H( ; r) denote singular theory with coefficients in the abelian group
F.

(6.6) THEOREM: If B is connected the composite

is multiplication by A.
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PROOF: Consider the inclusion

Since i*b : Ho(B +; Z) ~ Ho({b }+; Z) is an isomorphism,

7. The retraction property

In this section we compare the transfer for a fibration with that of a
retract up to homotopy.
Suppose that p : E - B and q : D - B are fibrations in # and

are fiber preserving maps such that p03BB ~ 1 over the identity. Then if
f : D ~ D is a fiber preserving map we have triangles
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be duality maps. Let À : E - D be dual to À : D - E relative to 03BC1and

03BC2, so that

is commutative. Consider the diagram

The commutativity of the triangle (A) follows from the commutativity
of the diagram



[15]

where the square is the dual of (7.2). The remaining commutativity
relations in (7.3) are easily checked. The theorem follows by comparing
the two outside paths in (7.3) from S s x B to E A Ss.

8. Proof of theorem (1.1)

We begin with an observation concerning the transfer map when the
base space is a suspension. Suppose that X is a finite dimensional
complex with base point xo and we are given

with p : E ~ S(X) in #. Let F denote the fiber over xo and choose a
base point eo E F. Let

be defined by L1 (e203C0it A x) = 0393(eo, 03C3(t, x )) (1), where f is a lifting
function and 03C3(t,x) : I ~ S(X) is the path

Let ll denote the Lefschetz number of f’ : F - F, the restriction of f
to F.

(8.2) LEMMA: Assume that F is connected. Then lld is stably
homotopic to 03C4(f) : S(X) ~E/F.

PROOF: Let C(X) = I A X denote the reduced cone of X (with 0 the
base point of I) and consider
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where p is the natural identification and

Then qi is a homotopy equivalence on each fiber and the restriction of
tp to the fiber over xo is the identity. It follows that

is fiber homotopy commutative. Therefore, by (5.3), (5.4) and (5.6)
03C4(f)p = 03C803C4(1 x f’) = 03C8(1 x f’)):C(X)/X ~ E/F, where 03C4(f’): So ~

p+ is associated with the trivial triangle

Let io : S° - F+ by io(+ 1) = eo and io( - 1) == +. Since F is connected it is
clear from the behaviour of the homomorphism in singular homology
induced by T(f’) that 03C4(f’) = llio. Note that

is commutative. Therefore

Since 03C1 : C (X)/X ~ S(X) is a homeomorphism, 03C4(f) = 039B0394 and the

proof is complete.
Now let
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be given where the fiber F of p : E ~ B is a finite complex and B is a

complex (not necessarily finite dimensional). Choose base points
bo E B and eo E F = p -’(bo) and let à) : 03A9B ~ F denote the boundary
map arising from the fibration p : E ~ B.

If X is a finite dimensional complex with base point and g : X ~ f2B

is a base point preserving map let

be induced by S (X) ~ S(g) S(lJB) ~03B5 B where E is the adjoint of
the identity map. We will show now that

is commutative, where à is as in (8.1) and k is from the Puppe
sequence of the cofibration F ~ E.
We have

where k in each case is from the appropriate Puppe sequence and jo is
the inclusion y - (y, eo). The commutativity of the right hand triangle is
by direct calculation. The commutativity of (8.6) now follows from the
commutativity of (8.3) and (8.7).
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We are now in a position to prove the theorem of the introduction.

(1.1) THEOREM: Assume that F is connected. Then

is trivial for any finite dimensional complex X.

PROOF: 03A9B has the homotopy type of a CW-complex Y. If ~ : Y ~
f2B is a homotopy equivalence it is sufficient, to prove the theorem, to
show that Aù) *(Ig 1) = 0 if X is a finite dimensional subcomplex of Y
and g : X - f2B is the inclusion followed by 0. By the commutativity of
(8.6) and Lemma (8.2)

We have a commutative diagram

where c, c’, c ", and j are quotient maps. Since {kj} = 0 we have

{k03C4(f)c} = c*{k03C4(f)} = 0. Since c * is monomorphic, {k03C4(f)} = 0 and the
proof is complete.

REMARKS: (1) The map 03C9 frequently appears in other forms, hence
theorem (1.1) applies for (a) coset maps p : G ~ G/H, or more generally
for (b) maps w : M ~ X which factor through the evaluation map
H(X) ~ X where H(X) is the space of homotopy equivalences of X,
or for (c) fibre inclusions of principal bundles. Theorem (1.1) states that
A03C9* = 0 and A * = 0 for all homology and cohomology theories on the
category of finite dimensional complexes. This is an extension of two
results of [7], wherein theorem (1.1) was proved only for singular
cohomology and for homotopy groups in the stable range. See also [5].

(8.8) COROLLARY: Let 03B1 ~03C0i (S2n). Then [03B1,i2n ] = 0 implies that
2{03B1} = 0, where {03B1} denotes the stable homotopy element represented by
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a and [03B1, i2n]] is the Whitehead product of a with the generator of
1T2n (S2n).

PROOF: The fact that [03B1, i2n] = 0 implies there is a map

F : S ix S2n ~ S 2n such that F restricted to * X S2n is the identity and F
restricted to Si x * represents a. Taking adjoints, we see that a factors
through W : M ~ S2n where M is the space of degree one maps on S 2n,
and w is the evaluation map given by evaluation at the base point. Thus
(1.1) may be applied to « in view of the remark. In this case

039B = x(S2n) = 2.
Let G be a compact connected Lie group, H a closed subgroup of G,

and p : G - G 1 H the projection.

(8.9) COROLLARY: As an S-map X(G/H)p : G ~ G/H is trivial,
where x(G I H) is the Euler characteristic of G I H.

In particular, if N is the normalizer of a maximal torus in G then
03C1 : G ~ G/N is stably trivial since x(G/N) = 1 [6, 12]. On the other
hand, it is interesting to note that 03C1*: 03C0k(G) ~ 03C0k(G/N) is an

isomorphism for k &#x3E; 2.

9. Smooth fiber bundles

In the case of a smooth fiber bundle p : E - B a more geometric
description can be given for the transfer associated with a fiber

preserving map. We assume that B and F are closed manifolds.
Let p : E ~ B x Rs 

S be a fiber preserving embedding. Its normal

bundle 03B2 is inverse to the bundle a of tangents along the fiber and we
have an isomorphism 03B1 ~ 03B2 ~ Rs associated with the embedding. Let

denote the Pontryagin-Thom map of this trivialization.
The diagonal inclusion into the fiber square, d : : E ~ E2, has normal

bundle a so that we have

where 03C01: E2 ~ E is projection onto the first factor.
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If f : E - E is a fiber preserving map let

(9.1) PROPOSITION: 03C4(f) : B+ ~ E+ is represented by

First observe that the S-map determined by c’ (1, f)c is independent
of the choice of embedding p and of the tabular neighborhood maps
used in constructing c and c’.
Now, for p : E - B x R s, let 03B2 denote the normal bundle, let S (03B2)

denote the total space of the unit sphere bundle, and let Ê denote the
quotient of D (03B2) obtained by identifying each fiber of S (03B2) to a point.
We regard Ê as an ex-space of B by p : Ê ~ B and j : B ~ Ê where
03C1([03BDe]) = p(e) and 0394 (p (e))= [03C5’e], where 03C5’e ~S (03B2). Then p is the

projection of a fiber bundle whose fiber over b is the Thom space Fib,
where vb is the normal bundle of the embedding Fb ~{b } x Rs .
Choose a fiber preserving tubular neighborhood D (03B2) C B x R and

let 0 : B x Ss ~ Ê denote the associated Pontryagin-Thom map. Let

be the composite B x Ss ~03B8 Ê ~d E 039BB Ê, where d(03C5e) = e 039B 03C5e.
By Atiyah’s duality theorem [1] 03BC is a duality map.
The diagonal embedding E ~ E xB D(03B2) has normal bundle 03B1 ~ 03B2 =

E x Rs. Choosing a fiber preserving tubular neighborhood E x D 
S 

C

E xB D( 03B2), we obtain

denote 0’ followed by the projection

(9.4) LEMMA: 8" is dual to li.
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PROOF: We must show that

is homotopy commutative. Since isotopic embeddings determine

homotopic duality maps, the duality map determined by

is homotopic to that determined by

The former duality map is it A 1 whereas, using the factorisation

the latter is easily seen to be homotopic to (1 A 0")v.
Proposition (9.1) is now a consequence of the following commuta-

tive diagram.

Here d’(e’039B03C5e ) = e 039B e’ 039B 03C5e, g(03C5e) = f(e) 039B 03C5e, and h(e’ 039B 03C5e) =
(e, e’, ve ). The unlabeled arrows denote the natural identification map.
The commutativity of the upper right hand triangle follows from the
fact that 03BC = 03B8 ".

REMARK It follows from Proposition (9.1) and the retraction

property (7.1) that the two methods of constructing the transfer which
are outlined in [3], do in fact lead to the same map.
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10. Proof of (3.7)

Suppose that E = (E, B, p, 0394) and E’ = (E’, B’, p’,0394) are ex-

spaces. If h : E - E’ and f : B - B ’ are such that p’ h = fp and hà =
0394 ’ f we will say that h is a map over f. If E’ is an ex-fibration then we
obtain from the special nature of the lifting function for E’ the

following covering homotopy property.
(10.1) Given F : B X I ~ B’ and a map h : E ~ E’ over Fo there is

H : E x I ~ E’ such that Ho = h and Ht is a map over F,, 0 _ t ~ 1.

Suppose that E is an ex-space of B and A C B is a subcomplex. As
before, let c : :E U C(EA) ~ E/EA denote the natural map. Let 03BB: B x

I - B x {1} U A x I be a retraction map and let F : B x I ~ B denote À
followed by projection onto B.

(10.2) LEMMA: Suppose that E is an ex-fibration. There is

q : :E/EA ~ E U C (EA ) over Fo and homotopies H : E /EA X I ~ E I EA
and K : E U C(EA) x I ~ E ~ C (EA) such that

(a) Ho = cq, H1 = 1, and Ht is over F,, 0 ~ t ~ 1.

(b) Ko = qc, K1= 1, and K, is over F,, 0 ~ t ~ 1.

PROOF: Consider

Applying (10. 1) for the ex-fibration E x I there is M : E x I ~ E x I

such that Mi = i, and M, is over At, 0 ~ t ~ 1. Then we actually have

Let q’ denote

Since Mo(BA) C EA x fOl we have q’(EA) ~~ (B). Let q : E /EA ~ E U
C (EA ) denote the collapse of q’. Then q is a map over Fo.
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To construct H, the map

has a quotient H : E /EA x I ~ E/EA which is the desired map.
To construct K let N : E x I - E U C(EA) denote the composite

Define K:E LJ C (EA ) x I - E UC(EA) by K (e,t) = N(e,t), if e EE,
and K ([e,s] ,t) = s *N(e,t), if eEEA, where s *[e’,t] = [e’,st] for

[e’, t] E C (EA ). This completes the proof.
We will now prove (3.7) which asserts that

is bijective provided E and E’ are ex-fibrations.
To show that c# is onto let 0 : : E ~ C(EA) ~ E’ be an ex-map and

consider

There is N : E/EA x I ~ E’ over F such that No = 03B8q. Let 03C8 =
N1 : E/EA ~ E’. Then t/1 is an ex-map and we will show that c#([03C8]) =
[0]. We have homotopies

over F, and

also over F. Then

is a homotopy from 0 to 03C8c over p-l 0 F. By a standard argument
involving the covering homotopy property (10.1) we see that 0 is

ex-homotopic to 03C8c.
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To show that c# is one-one let t/1o, t/11 : E/EA ~ E’ be such that t/1oc is

ex-homotopic to 03C81c by p : E U C (EA ) x I ~ E’ say. We have

where F(b,t,03BB) = F(b,03BB) and Q(e,t,0) = p (q (e), t), Q(e,0,03BB)=
t/1oH(e, À), and Q(e, 1, À) = 03C81H(e, 03BB). There is then R : E /EA x I x I ~
E’ over F which extends Q. Then S : E/EA x I ~ E’ by S(e,t)=
R (e, t, 1) is an ex-homotopy from t/1o to 03C81.

11. Proof of (4.7)

Let E = (E, B, p,~) be an ex-fibration in the sense of section 4. Let
~ (E) denote the unreduced fiberwise suspension of E and

~ (p) :~ (E) ~ B the projection. There is the "south pole" cross

section 5 : B - I (E) given by 03B4(b) = [e, 0] where p (e) = b and we let
~o (E) = (~ (E), B, E (p), 5). It is easy to to check that ~o (E) is an

ex-fibration as in section 4. The quotient map TT : ~o.(E) ~ S 1 039B E is an
ex-map and is a homotopy equivalence on each fiber. Hence by the
comparison theorem (3.2), 7r is an ex-homotopy equivalence. Note that
if p : E ~ B is a fibration with fiber a finite complex (not necessarily
equipped with a cross section) we may still form ¿o (E) which is an
ex-fibration.

Now let E be an ex-fibration. To construct an ex-fibration Ê and a
duality map

we proceed by induction over the skeleta of B. Let B have dimension n
and let A denote the (n -1)-skeleton of B. Assume there is an

ex-fibration D(E/A), with fiber Ê say, and a duality map

Let B be obtained from A by adjoining cells via Àj : Sn - 1 ~ A, j E J,
and let 03BBj : Dn ~ B denote the characteristic map. Let 03C8j : F x Dm ~
À*(E) be an ex-fiber homotopy equivalence and Iii : F x Sn-1 ~ 03BB *j(E)
its restriction.



131

We have a duality map

induced by cv. Choose a duality map

and let ~j : 03BB*j(D(E|A)) ~ F x Sn-1 be dual to o/j relative to ~j and v.

Then oj is an ex-homotopy equivalence and we have a homotopy
commutative triangle.

Let 0; : F x Sn-1 ~ D(E |A) denote the composite

and let X’ be obtained by adjoining, for each j E J, F x Dn to D(E lA)
via 6;. We have an ex-space (X’, B, p’,,A’) where p’ and L1’ are the
obvious maps. Moreover, by results of Dold and Thom [10 (2.2) and

(2.10)], p’ : : X’ ~ B is a quasifibration. We replace p’ by a fibration in
the usual way obtaining a commutative square

where X = {(x, 03C3) ~ X’ x BI|p’(~) = 03C3(0)}, p(x,03C3) = 03C3(1), 0394(b) =
(0394’ (b),b*) where b * denotes the constant path at b, and 03B1 (x) =_
(x, p’(~)*).
Now p : X - B is a fibration with each fiber p-1(b) of the weak

homotopy type of K Since X (being homotopy equivalent to X’) has
the homotopy type of a CW-complex, it follows from [16 Proposition
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0] that  p-1(b) has the homotopy type of a CW-complex, hence is

homotopy equivalent to F.
Let Ê = 1. (X). Then Ê is an ex-fibration as in section 4. We will

show now that there is a duality map

From (11.4) we obtain the following homotopy commutative diagram.

Let oi’ denote the duality map

and let v’ denote the duality map

We have from (11.6) a homotopy commutative diagram

It follows now that 03C9’(03BBj x 1) has an extension over Ss+1 X D n, for
each j E J, and therefore 03C9’ has an extension 03BC : Ss+1 X B ~ E 039B Ê,
which is clearly a duality map.
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