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Abstract

The uniform dimension theory of totally bounded metric spaces is

developed from a constructive point of view, starting from a

modification of the Lebesgue definition of covering dimension. The
subspace theorem and the (finite) sum theorem are proved. It is

shown that dim X ~ n if and only if for every map from X into the
(n + 1)-cell In+1, every point of I n+1 is unstable. An example shows
that dim X ~ n is not constructively equivalent to the existence of a
map from X into In with a stable value. However it is shown that

these latter two properties are equivalent if dim X S n. The product
theorem is proved by a direct construction of a cover. Also proved
are the (almost) fixed point theorem for I n, the P flastersatz, and the

equivalence of int X ~ 0 and dim X = n for closed subsets X of I n.

1. Introduction

Since the publication of Bishop’s book [3] on constructive analysis,
there has been a resurgence of interest in the constructive approach
to mathematics. Dimension theory provides an historical testing
ground for this approach. In 1911 Lebesgue [8] introduced the notion
of covering dimension and gave a somewhat faulty proof that

Euclidean n-space has covering dimension n. Two years later

Brouwer [4] gave a correct proof of Lebesgue’s claim, introduced the
idea of inductive dimension, and proved that Euclidean n-space also
has inductive dimension n. In 1926 Brouwer [5] formulated the notion
of inductive dimension in intuitionistic terms and proved, in a con-
structive way, that Euclidean n-space has inductive dimension n. The
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purpose of this paper is to develop the theory of covering dimension
from a constructive point of view. Berg et al. [2] investigate the
relationships between Brouwer’s constructive theory of inductive
dimension and our constructive theory of covering dimension.

Compact metric spaces form the natural category for a constructive

theory (e.g., Brouwer’s katalogisiertkompakte Spezies). In attempting
to constructivize Lebesgue’s definition of covering dimension we
were forced to adopt a modification of this definition that sidesteps
the problems of constructing a point that is in n + 1 sets. This

definition is classically equivalent to the original for compact spaces.
However, the completeness of the space is irrelevant in most ap-

plications. Hence we state our definitions and theorems for totally
bounded spaces, although they agree with the classical ones only for

compact spaces. Our basic definition turns out to be classically
equivalent to Isbell’s uniform dimension 8d as defined in [7; p. 64].
We assume that the reader is acquainted with the constructive

approach of Bishop [3]. All spaces will be totally bounded metric

spaces. A set A is located if d(x, A) = inf {d(x, a): a E AI exists (in
the extended reals) for each x. Note that the empty set is located and

d(x, cP) == 00 for each x. A subset A is bilocated if both A and its

metric complement ~ A ={x : d (x, A) &#x3E; 0} are located. A slight
modification of the proof of [3; Thm 8, p. 101] ] shows

THEOREM 0: Let f be a continuous real valued function on a totally
bounded metric space X, then for all except countably many real
numbers a, the sets

are bilocated and are metric complements of each other.

We denote by Se(A), the e-neighborhood {x : d(x, A)  ~} of A. By
Theorem 0 given 0  03B1  03B2, there exists 03B5 ~ (03B1, 03B2) so that SE (x ) is

bilocated and ~~ S~ (x) = S~(x).

2. Covering dimension

The central notion in the development of covering dimension is that
of the order of a cover. Classically, the order of a cover is at least n if
there is a point common to n sets of the cover. This definition poses
problems from the constructive point of view. For one thing, it is

generally difficult to tell if a given point is in a given set. Also, while
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total boundedness assures us of an ample supply of points that are
near things, we are often hard put to construct points that are in
things, even in a complete space. It is thus more natural to demand
points that are arbitrarily close to n sets. In a compact space these

notions are classically equivalent. Since we will be measuring dis-
tances to the sets in the cover we require these sets to be located. It
will be convenient to have the notion of order relativized to a

subspace.

DEFINITION: Let X be a totally bounded metric space, n a non-

negative integer, L a subset of X, and F a finite family of located
subsets of X.

( 1 ) o(3W) ~ n on L if, for every 5 &#x3E; 0, there is an x in L such that

d(x, F)  5 for n distinct elements F in 3W. If L = X we write

simply o (F) ~ n.
(2) o(3W) S n on L with separation 5 if, for each x in L, we have

d(x, F) 2:: 5 for all but at most n elements F in F. If L = X we
write simply o (F) ~ n with separation 5.

(3) o(F) ~ n (on L) if o(F) ~ n (on L) with separation 5 for some
03B4&#x3E;0.

The term finite family denotes what Bishop calls a subfinite set, that
is, a family indexed by the first k positive integers for some k. It is

convenient to allow a finite family to be empty. Two elements Fi and
F; of a finite family are said to be distinct if i 4 j even though possibly
Fi = F;. This allows you to construct covers, and compute their

orders, without having to worry whether two elements in the cover
are equal, an undecidable question in general. For simplicity we shall
suppress reference to the index set and use set terminology when
dealing with a finite family. For example we use the notations F G 3W
and 3W = {F : P (F)} if the latter collection is naturally indexed.

Classically either o(F) ~ n or o (F) ~ n + 1. Constructively this is

not so. For example let {fm} be a fugitive sequence and a == L (fm/m),
let F = {[-1, 0], [a, I]j and n = 0. However, the following weaker
statement holds.

THEOREM 1: Let X be a totally bounded metric space and F a finite
family of located subsets of X. If o(F) ~ n is impossible, then o(F) ~
n + 1.

PROOF: Let 8 &#x3E; 0. Choose a 03B4-approximation Y to X. If, for each y
in Y we have d(y, F) 2:: 25 for all but at most n elements F of F, then
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o (F) ~ n, which is impossible. Hence there is a y in Y such that

d (y, F)  303B4 for n + 1 distinct element F in F. Thus 0 (F) ~ n + 1.

Since the order of a cover F of X is defined in terms of points
being near subsets, it is natural to require only that U F be dense in
X, rather than demanding U F = X. This is convenient since quite
often UF = X in the classical sense but not in the constructive sense,
while U F is dense constructively. For example X = [0,2] and F =
{[0,1], [1,2]}.

Classically, one need only define what dim X :5 n means. Con-

structively we need also to define dim X ~ n. These correspond to
Brouwer’s oberer Dimensionsgrad and unterer Dimensionsgrad [5].

DEFINITION: Let X be a totally bounded metric space.
(1) A cover F of X is a finite family of located subsets of X such

that UF is dense in X.

(2) A cover 3W is an E-cover if diam F  E for every F in f.

(3) dim X :5 n if, for every E &#x3E; 0, there is an ~-cover F of X such
that 0(F)~ n + 1.

(4) dim X ~ n if there is an E &#x3E; 0 such that if F is an E-cover of X,
then 0 (F) ~ n + 1.

(5) dim X = n if dim X :5 n and dim X ~ n.

Our setting is the category of totally bounded metric spaces and
uniformly continuous functions. Hence a homeomorphism comes
equipped with moduli of uniform continuity in both directions. With
this in mind it is easily seen that these notions of dimension are
invariant under homeomorphism. A space X need not have a dimen-
sion even when dim X:5 1. To see this, let {fn} be a fugitive sequence
and let a == 1 fn/n. Consider the closed interval X = [0, a]. It is easily
verified that dim X ~ 1, that dim X = 0 if a = 0, and that dim X = 1 if

a ~ 0. However we cannot tell whether a is 0 or not, so we cannot

assign a dimension to X.
Even when the classical dimension of the space is known to be n

we may be unable to verify that dim X = n. The problem is that

dim X ~ n is not merely the negation of dim X  n, but entails the

construction of a number E. An example illustrating this distinction is
constructed as follows. Let {fn} be a fugitive sequence and let

K(n, N) = {j/2n: 1 :5 j :5 2n-N}. Let Hn = K(n, 0) if fN = 0 for all N  n,

and let Hn = K(n, N) if fN = 1 for N  n. Let X be the closure of the

union of the Hn. Then X is a compact metric space which, classically,
is either [0, 1] or [0, 1/2 N] U jj/2’: 1 :5 j :5 2NI for some N. Hence X



165

has classical dimension 1, but to show dim X ~ 1 you would need to
find an E that would, essentially, measure the size of the non-

degenerate interval contained in X. This E would provide unob-
tainable information about {fn}.
The subspace theorem takes two forms.

THEOREM 2: Let X be a totally bounded metric space, L a located
subset of X, and n a positive integer. Then

(1) If dim X ~ n - 1, then dim L::5 n - 1.
(2) If dim L ~ n, then there is an E &#x3E; 0 such that if F is an E-cover

of X, then 0(F) ~ n + 1 on L. Hence dim X 2:: n.

PROOF: Suppose we have positive numbers E and 5, and an E-cover
F of X. By Theorem 0 we can pick 0  ~  5/2 such that

{x E L : d(x, F)  ~} = S~(F) n L is located and has diameter less than
E for each F in F. Then FL = {S~(F) ~ L: F ~ F} is an E-cover of L.
If 0 (F) ~ n with separation 5, then 0 (FL) ~ n with separation 3/2, so
(1) is verified. If dim L ~ n, choose E so that 0 (FL) ~ n + 1 for any
E-cover $L of L. Then there is an x in L that comes within 8/2 of
n + 1 distinct elements of 0,, and hence within 3 of n + 1 distinct

elements of F. Since this is true for any 5, part (2) follows.
If L is a dense subset of X, then any ~-cover F of L is an E-cover

of X, so 0(F) ~ n + 1 on L if and only if 0(F) ~ n + 1 on X, and

0(F) ~ n + 1 on L if and only if 0 (F) ~ n + 1 on X. Hence, if

dim L S n, then dim X n, and if dim X n, then dim L n. Thus

dense subsets have the same dimension properties as their containing
spaces. This is because we are dealing with a dimension theory that is
invariant only under uniform equivalence, (see [7; cor. 23, p. 66]).

It is a classical theorem that if a space is the union of countably
many closed subspaces, then its dimension is the supremum of the

dimensions of those subspaces. Thus, for example, the rational points
in the square form a space of classical dimension zero. One might
hope to get a constructive version of this theorem by restricting
attention to compact spaces for which the topological and the uniform
theories are classically equivalent. However, such a theorem might
prove to have very little interest since it is probably impossible to
construct a compact space that is a union of countably many closed
subspaces in an interesting way. To appreciate the difficulties in-

volved, consider the space consisting of the points 0, 1, 1/2, 1/3,....
This space is certainly the union of countably many closed subspaces,
but it is not constructively compact because it is not constructively
complete.
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As in the uniform theory [7; cor. 8, p. 80], we can get the sum
theorem for finite sums. Constructively we must distinguish two
classically equivalent statements in this theorem.

THEOREM 3: Let {A,B} be a cover of the totally bounded metric
space X. Let dim A :5 n. Then

(1) if dim B :5 n, then dim X :5 n, and
(2) if dim X 2:: n + 1, then dim B 2:: n + 1.

PROOF: Since dim A n we can find, for any E &#x3E; 0, an (E/2)-cover
F of A such that 0(F) ~ n + 1 on X with separation 8 ,E/4. Suppose
G is a (03B4/ 16)-cover of B such that o(cg):5 k on X with separation
n  03B4/ 16. We shall construct an ~-cover E of X such that 0(E) ~
max (n + 1, k) with separation 17. Partition % into disjoint subfamilies
11 and HF, where F ranges over F, such that if G E HF, then

d(G, F)  3/2 while if G E 11, then d(G, F) &#x3E; 8/4 for all F in F. For
each F in F let F = F U UKF, and let j7 == {F : F E F}. If d(x, F) 2:: 8
and G E KF, then d(x, G) 2:: d(x, F) - d(G, F) - diam (G), so d(x, F) 2::
8 - 8/2 - 03B4/ 16 ~ ~. Hence 0 (F) ~ n + 1 with separation n.
Clearly E = F ~ G is an E-cover of X. We shall show that o(6) s

max (n + 1, k) with separation ~. For x in X, either d(x, G) &#x3E; 17 for all
G in 11, or d(x, G)  2~ for some G in 11. In the first case the result
follows from the fact that 0(F)~ n + 1 with separation 17. In the

second case d(x, F) &#x3E; 03B4/4 - 03B4/16 - 2~ &#x3E; ~ for each F in Y. Thus if

d (x, E)  17 for E in 6, then either E E 11, or E = F and d (E, G)  17
for some G in KF. For each G in W let t(G) = G if G ~ G, and
t(G) = F if G E KF. Since 0(G) ~ k with separation n, we may choose
a subfamily J of W of cardinality k such that d(x, G) ~~ for G in
GBJ. It follows that if E E EBt(J), then d(x, E) &#x3E; 17. Hence o(e) ~ k
with separation n.

Statement (1) now follows by choosing E &#x3E; 0 arbitrarily and using
dim B ~ n to get k = n + 1. To prove statement (2) choose E &#x3E; 0 so

that if ce is an E-cover of X, then 0(C) ~ n + 2. Then the assumption
that o(G) ~ n + 1 is absurd, so o(G) n + 2 by Theorem 1. But W can
be any (03B4/16)-cover of B. Hence dim B 2:: n + 1.

Note that we did not prove that if dim X n + 1, then dim A
n + 1 or dim B 2:: n + 1. Indeed, we cannot hope to show this con-

structively. To see this, let fail be an enumeration of the rational
numbers in [0, 1] and {bj} an enumeration of the rational numbers in
[1, 2]. Let {fn} be a fugitive sequence and define fx,l as follows. Let
x2; = bi if f2n = 0 for aIl n :5 j, otherwise let x2; = 0. Let X2i-1 = ai if



167

f2n-l = 0 for all n ~ i, otherwise let X2i-1 = 0. Let X be the closure of
the set {xk}. Then X is a compact metric space. Let A = X n [0, 1] and
B = X rl [1, 2]. It is easily verified that dim X ~ 1, but we have no

way of knowing whether dim A 2:: 1 or whether dim B 2:: 1.

3. Stable values

Let X and Y be totally bounded metric spaces and f a uniformly
continuous function from X to Y. A point a in Y is said to be a stable
value of f if there is an E &#x3E; 0 such that if g is a uniformly continuous
function from X to Y, and ~ f2014 gll  E, then d(a, g(X)) = 0. A point a
in Y is an unstable value of f if for every E &#x3E; 0, there is a uniformly
continuous function g from X to Y such that ~f 2014 gll  E and

d(a, g(X)) &#x3E; 0. In the sequel I = [0,1].

THEOREM 4: If X is a totally bounded metric space and f : X ~ I" is
a uniformly continuous function, then the set of stable values of f is

open.

PROOF: Suppose a is a stable value of f, so that if IIf - gll  E, then
d(a,g (X )) = 0. Note that S~ (a) ~ In. We shall show that if |b - a | 
E/2, then b is a stable value of f. Suppose ~f 2014 gli  E/2. We want to
show that d(b, g(X)) = 0. Let 0 be a homeomorphism of In such that

~ (b) = a and ~ id 2014~~ ,E/2, where id is the identity map. Then

~f - ~o gll  E so d(a, ~(g(X))) = 0. Thus for any 8 &#x3E; 0 there is an x

in X such that la - ~(g(X))  03C9(03B4), where lù is a modulus of con-

tinuity for ~-1. Hence lb - g(x)1  8, and we are done.

We need here a few elementary facts about general position. These
facts will also play a prominent role in the proof of the imbedding
theorem in section 6. The constructive point of view requires a slight
modification of the usual definitions and proof s. If 03C51, . . ., v, are

elements of R n we say they are linearly independent if for each E &#x3E; 0

we can find a 8 &#x3E; 0 such that Y- 1 ri  E whenever ~ |ri03BDi|  5. It is not

difficult to show that v1, ..., vk are linearly independent if and only if
there is an invertible n x n matrix T such that Tvi = ei for 1 ~ i ::5 k,
where ei is the standard i th basis vector of Rn. Elements vo, v1, . . ., vk
of R n are affine independent if VI - Vo, ..., Vk - vo are linearly in-

dependent. A finite subset V of R n is in general position if every finite
subset of V of cardinality not exceeding n + 1 is affine independent.

If V is in general position in Rn then there is a 5 &#x3E; 0 such that for
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any two disjoint finite subsets S and T of V, if card S + card

T ~ n + 1, then the distance between the convex hulls of S and T is
at least 5. Finally, if xl, ..., Xm are any points in Rn, and E &#x3E; 0, then
there exist points y1, . . ., ym in general position in Rn such that xl = y,
and lxi - yil  e for 2:5 j :5 m. This can be proved by induction on m
using the characterization of linear independence stated in the

preceding paragraph.

THEOREM 5: Let X be a totally bounded metric space and f a
uniformly continuous function X to In+1. Then

(1) if dim X ~ n, then each point in In+1 is an unstable value of f,
and

(2) if f has a stable value, then dim X ~ n + 1.

PROOF: Let be a modulus of continuity for f. Fix a point a in
In+1, a number e &#x3E; 0, and an w(e/3)-cover f¥ of X. Choose 8 such that
0  03B4  w(e/3). For each F in f¥, choose a point b, in In+1 so that

d(bF, f(F))  e/3 and the bF, together with a, are in general position.
Let AF(X) = sup (0, 1 - d(x, F)IS). Define g by

Since F is a cover of X, the denominator 1 Àp(x) is at least 1. Note

that if d (x, F) ~ 03B4, then 03BBF (x ) = 0, whereas if d (x, F)  úJ(E/3), then
lb, - f(x)1  E. Hence Iif - gll  E.
To prove statement (1), suppose o (F) ~ n + 1. Then we can choose

8 such that for every x in X, there is a subset of F of cardinality
n + 1 so that d(x, F) ± 8 if F is in FBJ. Since a and the bp are in

general position, and since no more than n + 1 of the numbers Àp(x)
are different from 0, we have d(a, g(X)) &#x3E; 0. To prove statement (2),
suppose d(a, g(X)) = 0 for aIl 8 (note that g depends on 8). Then

o(F) ~ n + 1 is absurd, and hence o(F) ~ n + 2 by Theorem 1.

The converse of the first part of Theorem 5 is proved with the aid
of an intermediate notion that is classically equivalent to [7; Th. 24, p.
87], and, for compact spaces, to [6; Prop. C, p. 35]. We say that B is
an E-enlargement of A if A C B and d(b, A)  E for each b in B. If K
and L are any subsets of a metric space, then d(K, L) &#x3E; 0 means that

there is an n &#x3E; 0 such that if x E K and y E L then d(x, y)~ TI.

DEFINITION: Let X be a totally bounded metric space.
(1) X satisfies condition Dn if for any located subsets Ao, ..., An of
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X, and E &#x3E; 0, there exist bilocated E-enlargements Bo,..., Bn,
and 8 &#x3E; 0, such that d(~ S03B4 (Bi ), ~S03B4(~ BJ) &#x3E; 0.

(2) X satisfies condition Dn if there exist located subsets Ao, ..., An
of X, and E &#x3E; 0, such that for any bilocated E-enlargements
Bo, ..., Bn we have d(~S03B4(Bi) ~ S03B4(~ Bi)) = 0 for all 8 &#x3E; 0.

We shall show that if each point in I"+1 is an unstable value of each
map f : X ~ In+1, then X satisfies Dn (Theorem 6), and if X satisfies Dn
then dim X:5 n (Theorem 7). Together with Theorem 5 this will show
that these three conditions are equivalent. Condition Dn provides a
characterization of dim X * n that is new even from the classical

point of view. The situation is not quite so simple for dim X ~ n + 1.
We have shown that if there is a map f : X ~ In+1 with a stable value,
then dim X ~ n + 1 (Theorem 5). We shall show (Theorem 6) that if X
satisfies Dn then such a map f exists. We shall also show (Theorem 8)
that if such a map f exists, then X satisfies D’n. However an example
shows that we cannot show (constructively) that if dim X &#x3E; n then X
satisfies Dn. In the next section we will develop more machinery
(Theorem 9) that will enable us to show that if dim X = n + 1 then X
satisfies Dn.

THEOREM 6: If each point a in In+1 is an unstable value of each

uniformly continuous function f : X - In+1, then X satisfies condition
Dn. If X satisfies condition D’n then there is a uniformly continuous

function f: X ~ In+l with a stable value a.

PROOF: Let Ao,..., An be located subsets of X, and 1 &#x3E; ~ &#x3E; 0.

Define f: X ~ In+1by fi(x) = d(x, Ai ) 039B 1. Let g : X ~ In+1 be such that
~f - gll  ~/4. Let a be a point in In+1 such that E/2  ai  3E/4 for
1 ~ i ~ n + 1. To prove the first statement, choose g so that

d(a, g(X)) &#x3E; 0. Now adjust a slightly so that Bi = gal ([0, ai]) is bilo-
cated for 1 ~ i :5 n + 1. The {Bi} show that X satisfies condition Dn
with 8 = 03C9(d(a, g(X))/2), where l1) is a modulus of continuity for g.
To prove the second statement, note that d(a, g(X)) &#x3E; 0 is absurd, for
it implies that X satisfies condition Dn. Hence d(a, g(X)) = 0, so a is a
stable value of f.

We say that the bilocated sets Bo,..., Bn are well placed if

d(~ S03B4(Bi), ~S03B4(~ Bi)) &#x3E; 0 for some 8 &#x3E; 0.

LEMMA 1: If Bo,..., Bn are well placed, then there is an a &#x3E; 0 such

that any bilocated a-enlargements Eo,..., En are also well placed.
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PROOF: Suppose d(~S03B4 (Bi), ~S03B4)(~ B,» &#x3E; 0 for 03B4 &#x3E; 0. Let a = S/2,
and let Eo,..., En be bilocated a-enlargements of Bo,..., Bn. Then
S03B1(Ei) C S03B4 (Bi ) and --- Ei C - Bi, whence the lemma follows.

LEMMA 2: If X satisfies condition Dn and L is a located subset of X,
then L satisfies condition Dn.

PROOF: Suppose E &#x3E; 0 and Ao,..., An are located subsets of L.
Then there exist well placed, bilocated (E /2)-enlargements Bo,..., Bn
of Ao,..., An in X. By Lemma 1 we can choose a in the interval

(0, E/2) so that S03B1 (B0), ..., S03B1 (Bn) are well placed, and Ci = S03B1(Bi) ~ L
is bilocated in L for 0 ~ i ~ n. Then Co,..., Cn are well placed,
bilocated e-enlargements of Ao, ..., An in L.

THEOREM 7: If X satisfies condition Dn, then dim X ~ n.

PROOF: We shall show, for fixed E &#x3E; 0 and all positive integers m,
that if X satisfies Dn, and X has an e-cover of cardinality m, then X
has an ~-cover F such that 0 (F) ~ n + 1. If m ~ n + 1, there is no

problem. Suppose the conclusion is true for spaces having E-covers of
cardinality not exceeding m, and let Co,..., Cm be an E-cover of X.
Then, by Lemma 2, L = CI U ... U Crn has an e-cover 6 such that
o(E) ~ n + 1. If card (E)~ n we are done. If not, modif y Z by
successively enlarging n + 1 tuples of elements of 6 so that E is

bilocated for each E in 6 and such that every n + 1 tuple of sets of 6
is well placed, keeping 0(E) ~ n + 1. Choose 6 &#x3E; 0 such that o(6) S
n + 1 with separation 5, and such that if Eo,..., En are in 6, then
d(~S03B4(Ei), ~S03B4(~Ei)) &#x3E; 0. Let F = ~E~ES03B4/2(~E)~S03B4/2(Co). We can
decrease 6 so that F is located and diam F ,E. Let F = E U {F}. To
see that F is a cover of X, note that if x E X, then either (i) x E F, or
(ii) d(x, - E) &#x3E; 0 for some E in 6, and hence d(x, E) = 0, or (iii)
d (x, Co) &#x3E; 0 and so d (x, L) = 0. It is readily seen that 0(F) ~ n + 1
with separation 3/2.

THEOREM 8: If f is a uniformly continuous function from X to I"+’
with stable value a, then X satisfies Dn.

PROOF: Since the set of stable values of f is open, we may choose
a = (a1, . . ., an+1) so that Ai = fj-1 1 ([0, ad) is located for 1 n + 1.
Since a is a stable value of f, there is an Eo &#x3E; 0 such that if g : X ~ In+1
is uniformly continuous and ~if - g~  ~o, then d(a, g(X)) = 0. We can
choose Eo so that Seo(a) C In+l (in fact, we cannot avoid it). Let
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E = 03C9(~o/2), where w is a modulus of continuity for f, and let Bj be
any bilocated E-enlargement of Aj for 1 :5 j :5 n + 1. Define h : X ~ Inll

by

hj(x) = [(fj(x) - E./2) v (a; ~ t(x) + d(x, Bj))] A (t(x) + Eo/2) A 1.

Note that ~ f - h~ ~ ~o/2. If x E B;, then hj(x) ~ (f1(x) - ~o/2) v ai = a;
since d (x,Aj )  03C9(~o/2) and f(y) ~ aj for y in Aj. If x ~~Bj, then
d (x, Bj) &#x3E; 0 and fj(x) ’2: a;, so hj (x) &#x3E; a;. Define g : X ~ In+1 by

gj(x) == 0 v (hj (x) + (co/3)(- 1 v (d(x, Bj)2014 d(x, ’- Bj)) 039B 1)) A 1.

Clearly Ilg - hll:5 Eo/3, so Iif - gll  Eo. Given 0  03B4  1, choose x in X
such that d(a, g (x)) ,EoS/6. If d(x, - Bj)~ 5/2 for some j, then

d(x, Bj) = 0 so gj(x) ~ aj - Eo8/6 which is impossible. On the other
hand, if d (x, Bj) ~ 8/2 for some j, then x ~ ~ Bj, so gj(x) &#x3E; a; + Eos/6,
also impossible. Hence x E S’s(B;) and x E S03B4(~ Bj) for all j, so

d(~ S03B4(Bj), ~S03B4(~~ Bj)) = 0.

We shall now exhibit a space X such that dim X ’2: 1, but we cannot
assert that X satisfies condition D’. Let si, s2, ... be a sequence of

points in 12 such that for each positive integer k, if N ± 4B then
{s1, . . ., s,l is a 21-k-approximation to I2. Let pi, p2, . . . be an

enumeration of the polygonal paths in I2, with rational endpoints, that
join opposite sides of I2. Let ani, an2, ... be a sequence of points in Pn
such that for each positive integer k, if N ~ 4B then {an1, ..., anNI is a
2’-’-approximation to Pn. Let lfn) be a fugitive sequence. Define xi to
be si if fn = 0 for aIl n :5 i, and xa = ani if fn = 1 for some (unique) n ~ i.
Let X be the set of all such xi. Then X is a located subset of I2, since
for each positive integer k, if N ~ 4k, then lx,,..., xN} is a 21-k-

approximation to X.
We shall show that dim X ’2: 1. In fact, we shall show that o(F) ~ 2

for any 1/2-cover F of X. Suppose F is a 1/2-cover of X. If 0(F) ~ 1
with separation 8  1/2, let A = i{x1, . . ., xN} be a (5/3)-approximation
to X. Then A contains a (03B4/3)-approximation Ao to a polygonal path
joining opposite sides of J2. Hence, for any pair of points a, b in Ao,
we can find a sequence of points a = ao, ai,..., an = b in Ao such that
d(ai-,, ai) ,b for 1 ~ i :5 n. Since o(fF) :5 1 with separation 5, we must
have Ao C F for some F in F. But diam Ao &#x3E; 1/2 and F is a 1/2-cover.
This is absurd, so 0(F) ~ 2 by Theorem 1.

On the other hand, there is no hope of showing that X satisfies D’0.
To do so, we would have to exhibit a located subset A of X and a

number E &#x3E; 0, so that if B is any bilocated E-enlargement of A, then
d(B, - B) = 0. In particular, we would have to produce an (E/2)-
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approximation T to A. Then we could find a 5 between E/2 and E such
that 203B4 ~ lx - y |for all x and y in T, and 8:;i lx - Si for all x in T and
all i. Let K = UxET Si) (x) in 12. It is readily seen that there are paths
Pn, with n arbitrarily large, that are either bounded away from K, or
bounded away from - K. Clearly B = K ~ X is a bilocated E-

enlargement of A. However, if fn = 1, and Pn is bounded away from K
or ~ K, then d(B, - B) &#x3E; 0. Hence, knowing that d(B, - B) = 0 gives
us information about the sequence fn that we cannot necessarily
obtain by examining a finite number of its terms.
Alexandrov gave a classical characterization of dimension for se-

parable metric spaces in terms of extensions of continuous functions
into spheres [6; Theorem VI 4]. As usual the constructive version of
this theorem must take two forms. The proofs are modifications of
the proof in [6] and are omitted.

THEOREM A: Let X be a totally bounded space. Then dim X:5 n if
and only if for every located subset C of X, each map f : C - S" can be
extended to X.

THEOREM A’ : Let X be a totally bounded metric space. Then the

following are equivalent:
(1) There exists a located subset C of X, a map f : C ~ Sn-1 ~ In,

and a positive number 8 such that if g : X ~ I n with Ilf - gllc  8,
then g(x) is dense in I n.

(2) There exists a located subset C of X, a map f : C ~ Sn-’, and a
positive number 8 such that if g : X ~ Sn-1, then Ilf - gllc &#x3E; 8.

(3) There is a map of X onto I" with a stable value. The con-
structive Tietze extension theorem [3; page 107] is required in
the proofs of these theorems.

4. Complementary covers

It is a classical theorem that dim X ~ n - 1 if and only if X =

¥1 U ... U Yn where dim Yi = 0 for 1 ~ j ~ n. This is false in the

uniform theory (see Theorem 3). At the level of E-covers, however,
there is a (constructive) uniform analog. Given an E-cover of order n
we can find an E-cover that is the union of n families of order 1.

Moreover, we can do this in such a way that the union of the two
E-covers has order n + 1 (see Theorem 9).



173

LEMMA 3: If F is an E-cover of X, and Ek is a located subset of X
such that 0(F) ~ k on Ek, then there is a located subset Ek-1 of Ek such
that 0(F) ~ k 2014 1 on Ek_1, and a finite family Ck of located subsets of
Ek, of diameters less than E, such that 0(Ck) ~ 1 and Ck U {Ek_1} is a

co ver of Ek.

PROOF: Choose 8 such that k on Ek with separation S, and
F is an (E - 8)-cover of X. Choose q between 6/4 and 8/2 so that
C(1) = f x E Ek : d(x, F)  TI for all F in JI is bilocated in Ek for each
finite subset J of F. Let ’Ck = IC(j): card (1) = kl. Note that if C(J,)
and C(j2) are in Ck, and J1 ~J2, then d(C(J1), C(J2)) &#x3E; 8/4, for

otherwise there would exist an x in C(Ji) and a y in C(J2) such that
d(x, y) ,6/2, so x would be within 5 of every F in Il U J2, which
contains at least k + 1 sets. Thus 0(Ck) ~ 1. Also, if C E ’6k, then
diam (C)  E.
Now choose a in the interval (0, ô18) so that Ek_1 =

{x E Ek : d(x, - C)  a for all C in (Ckl is located. Then ’Ck U {Ek-1} is a
cover of Ek since, if x E Ek, then either x E Ek-¡, or d(x, --- C) &#x3E; 0 for

some C in Ck, in which case d(x, C) = 0. Moreover, 0(J) ~ k 2014 1 on
Ek-1 with separation ôl 16. Otherwise there would be an x in Ek-1 such
that d(x, F)  5/8 for all F in a subset 1 of F of cardinality k. Since
x ~ Ek-1, there is a y in ~ C(J) such that d(x, y)  8/8. But then

d(y, F)  3/4 for all F in J, so y E C(j), which is absurd.

THEOREM 9: If F is an E-cover of X such that o (F) ~ n, then there
is an e-cover C = C1 U ... ~ Cn of X such that o(Ck) ~ 1 for 1 ~ k ~ n

and o(F ~C) ~ n+1.

PROOF: By repeated application of Lemma 3, we construct located
subsets X = En ~ En-1, ~· · ·~ Eo = 0 and finite families ck of located
subsets of diameters less than E, such that k on Ek, lek U {Ek-1}
is a cover for Ek, and 0(Ck) ~ 1, for 1 ~ k ~ n. Hence 16 =

C1 U · · · U Cn is an E-cover of X with 0(Ck) ~ 1 for 1~ k ~ n. It

remains to show that o(F U C) ~ n + 1. Choose 6 such that o(F) ~ k
on Ek with separation 36, and 0(Ck) ~ 1 with separation 5, for 1 S k S

n. For any x E X, there exists î ~ F such that d(x, F)  26 for all F

in J, and d(x, F) 2: 8 for all F not in 1. Let J have cardinality j + 1.
Then d(x, Ej) ~ 8, since o(F)~ j on Ej with separation 38. But Ej
contains every set C in C1 U ... U ’6j, and, since o(Ck) ~ 1 with

separation 5, we have d(x, C) 2: 8 for all but at most n - j sets C in C.
Hence 0(F U C) ~ n + 1 with separation S.
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Armed with Theorem 9, we can settle the remaining question
concerning the converse of Theorem 5.

COROLLARY: If dim X = n, then X satisfies D’n-1-

PROOF : Choose ~ &#x3E; 0 so that if F is a 3~-cover of X, then

o(F) ~ n + 1. Let Co U ... · ~ Cn be an n-cover of X such that o(Ci) :5
1 with separation 3 E, where 0  E  ~, for 0:5 i ~ n. Let Aj = U Cf¿j for
1 * j s n and suppose that B1, . . ., Bn are bilocated E-enlargements of
A1, . . ., An. Let y = IB, fl S~(C): C~ Ci}, for 1 :5 i ~ n. Note that Bi =

~ Bi, that C0 U 001 U · · · · ~ Bn is a 3 ~-cover of X, and 0 (Bi ) ~ 1 for
1 ~ i ~ n. If 03B4 &#x3E; 0, choose a in the interval (0,5) so that

C n n 7=1 1 S03B1(~ Bi) is located for each C in Co. Let D be the collection
of all such sets. Note that o(D) ~ 1. Then F = D U 2Bi 1 U ... · ~ Bn is a

3 ~-cover of X, for if x E U Co, then either x E ~ D or d (x, Bi) = 0 for
some 1 ~ i ~ n. Thus, since o(F) ~ n + 1, there must be points ar-

bitrarily close to ~ D and all the Bi. But ~D ~ ~S03B4(~ Bi), so X

satisfies I)’n-1-

Theorem 9 also allows us to construct a cover of X x Y from

covers of X and Y in such a way as to prove the product theorem.

THEOREM 10: If dim X:5 m and dim Y:5 n, then dim X x Y:5

m + n.

PROOF: By repeated application of Theorem 9 we can construct a
sequence of E-covers Fo, F1, . . ., Fn of X such that

o(Fo ~ F1 ~ · · · ~ Fn) ~ m + n + 1 with separation 3. Let C =

Cf¿o U Cf¿ 1 U ... U Cf¿n be an E-cover of Y such that o(Ci) ~ 1 with

separation 5, for 0 sis n. Let D = IF x C : F ~Fi and CE Ci for

some 1 ~ i ~ n}. Then 1-51 is an E-cover of X x Y. We shall show that

o(D) ~ m + n + 1 with separation 8. If (x, y) E X x Y, then there exist
sets Ci E Ci such that d(y, C) - 3 if C G % and C ~ Ci for 0 S i :5 n.
Also there is a subset 1 of Fo U ° ° · ~ Fn of cardinality m + n + 1
such that d(x, F) ~ 03B4 for all F in Fo U ... · ~ Fn outside of J. Then
d((x, y), F x C) 2= 5 unless C = Ci for some i, and F E J. But each F

in j is paired with a unique Ci, so there are only m + n + 1 excluded
sets F x C.
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5. Dimension in the n-cell

Any ordinary notion of dimension of totally bounded spaces must

assign dimension n to In. That dim In S n is fairly straightforward.
Clearly F = 1[(k - 1)/m, k/m]: 1 ~ k ~ m } is a (l/m)-cover of I such
that o(F) ~ 2 with separation 1/4m. Hence dim I ~ 1, and repeated
application of Theorem 10 shows that dim In ~ n. That dim In ~ n is

the Pflastersatz. We prove it via the (almost) fixed point theorem. The
argument here follows classical lines.

LEMMA 4: Let à be an n-simplex with vertices eo,..., en. Let

IA,,, ..., An} be a cover of à such that each face [ei(Oh ..., ei(r)] of à is
contained in Ai(,,) U ... U Ai(r). Then o (Ao, ..., An) = n + 1.

PROOF: We must show that o (Ao, ..., An) ~ n + 1. For à &#x3E; 0 let T

be a triangulation (by successive barycentric subdivision) of the

simplex à of mesh less than 5. Assign to each vertex v in T a vertex
S(v) = ei of ~ such that v E Ai and the ith barycentric coordinate of v
is nonzero. This is possible by virtue of the hypothesis of the lemma.
By Sperner’s Lemma [1; p. 160], there exists an n-simplex U =
[vo,..., vn] of T such that S(vo),..., S(vn) are all distinct. But this
means that U intersects all the sets Ao, ..., An. Since the diameter of
U is less than 3, we conclude that the point vo is within 6 of each set
Ai.

REMARK: We give no proof of Sperner’s Lemma because it is a

statement of a purely combinatorial, finitistic nature.

THEOREM 11: (Brouwer Fixed Point Theorem). Given a uniformly
continuous function g : In ~ In and a à &#x3E; 0, we can find a point x in In
such that ig(x) - x|  03B4.

PROOF: We will identify In with the (closed) n-simplex ~ = [eo, ...,
en]. If x Eià, then x = E7=o x (i) ei where x(i) ~ 0 and ~ x(i) = 1. Equip
A with the metric d(x, y) = sup lx(i) - y(i)l. Let w be a modulus of
continuity for g such that w(&#x26;) - &#x26; for all 03B4 &#x3E; 0. Let x’ denote g(x).
For arbitrary 5 &#x3E; 0, choose 0  E  03C9(03B4/3n ) so that Ai =
{x El A: x’ (1) * x(i) + ~} is located for 0 :::;; i ~ n. The condition 1 x(i) =
1 x(i) = 1 implies that Ao, ..., An is a cover of ~. To show that the

sets Ao,..., An satisfy the hypothesis of Lemma 4, let x be an

arbitrary point on the face [ei(Oh ..., ei(r)] of L1. Then

x(i(0)) + . . . + x(i(r)) = 1 ~ x’ (i(0)) + ... + x’ (i(r). Hence we can find



176

a k such that x’(i(k)) ~ x(i(k)) + E. Therefore x E Ai(k). By Lemma 4
we have o (Ao, ..., An ) = n + 1. This means that we can find an x in à
such that d(x, A,)  lù(8/3n) for 0 ~ 1 * n. Hence we can find points yi
in Ai such that d(x, yi)  w(8/3n), so d(x’, y’i) ,Sl3n. Since y’i(i) ~
yi(i) +,613n, we conclude that x’ (i)  x(i) + 8/ n for 0 ~ i ~ n. Now

observe that 1 - x’ (i) == .¿. x’ (j)  .~. x(j) + 03B4 = 1 - x(i) + 03B4. Hence
j-,

lx(i) - x’ (i)|  5 for 0 ~ i ~ n. So d(x, g(x))  6.

THEOREM 12: The identity map on In has a stable value. Hence
dim In - n.

PROOF: Let id denote the identity function on In and a the point in
I n all of whose components are 1/2. To show that a is a stable value
of the map id, let g : In ~ I n by any uniformly continuous function
such that ~ id - g ~  1/2. Then the function h (x ) = x - g (x ) + a is

clearly a uniformly continuous function from In into I". By Theorem
11, for each 6 &#x3E; 0 we can find an xo in I n such that 1 h (xo) - xol  8.

Hence lg(xo) - a |  8. Since we can do this for each 6 &#x3E; 0, it follows

that d(a, g(In)) = 0.

By Theorem 12, any subset of In with a nonempty interior has
dimension n since it contains a homeomorph of I n. Conversely, it is a
classical result that a closed subset X of I n of dimension n must have

a nonempty interior. However, the example following Theorem 3

shows that even thugh X is located we may not be able to find a point
x in X and a 8 &#x3E; 0 so that Ss(x) C X. But if X is bilocated, then we
can find the required x and 5.

THEOREM 13: If X is a bilocated closed subset of In, and dim X ~ n,
then X contains a nonempty open subset of In.

PROOF: Choose E &#x3E; 0 so that if F is any E-cover of In then

0(F) ~ n + 1 on X. Let T be a triangulation of In of mesh less than
E/2, and let ~ be the set of open n-simplices of T. Choose a point t03C3 in
each open n-simplex 0", and choose a 8 &#x3E; 0 so that S2l)(ta) C or for each
or in ~. Since - X is located either, for each u E 4, we can find a
point C, in or ~ ~ X, or no element of S03B4 (t03B4) is in ~ X. We shall show
that the former alternative is impossible. It will follow that if x E

S03B4 (t03C3), then we cannot have d(x, X) &#x3E; 0, so d(x, X)  r for any r &#x3E; 0.

Thus x E X, since X is closed, so X contains the non-empty open set

S03B4 (t03C3).
Suppose that for each cr E 4 we have a point C03C3 ~ ~ ~ - X. Let To
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be the barycentric subdivision of T using the points c, as the

barycenters of the n-simplices 03C3. If x E I n, and u is a vertex of To, let

x(u) denote the barycentric coordinate of x with respect to u. If

x, y E In, let d(x, y ) = sup Ix(u) - y(u)| where u ranges over the ver-
tices of To. This gives a metric on I n that is equivalent to the usual
one. Since c, G - X we can find an n &#x3E; 0 such that, for each or in ~, if
x(c«) &#x3E; 1 - (n + 1)~, then d(x, X) &#x3E; ~. Let Fv = {x : x (v) 4 01 for each
vertex v in the original triangulation T, and set F = {F03C5 : 03C5 is a vertex

of T}. Now each n-simplex of To has a vertex in T, so F is a cover of
In. The mesh of T is less than E/2, so F is an E-cover of In. We shall
show that 0 ($) :::; n on X with separation n, a contradiction.
Suppose that d(x, F03C5)  ~ for all v in a set V of cardinality n + 1.

Then, for each v in V, there is an (abstract) n-simplex 03C403C5 in To such

that v E Tv and x(u)  ~ for each vertex u not in Tv. So x(u)  ~ for
each vertex u not in ~03C5~03BD03C403C5. Since the cardinality of V is n + 1, either
~03C5.~03BD Tv = 0, or ~03C5~03BD 03C403C5 = {c03C3} for some 03C3 in ~. Since lu x(u) = 1, and
x(u) can be bounded arbitrarily closely to 0 off-sets of cardinality
n + 1, we must have x(c03C3) &#x3E; 1 - (n + 1)q, and hence d(x, X) &#x3E; q.
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