Compositio Mathematica

Peter Russell

Simple birational extensions of two dimensional affine rational domains

Compositio Mathematica, tome 33, no 2 (1976), p. 197-208
http://www.numdam.org/item?id=CM_1976__33_2_197_0
© Foundation Compositio Mathematica, 1976, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SIMPLE BIRATIONAL EXTENSIONS OF TWO DIMENSIONAL AFFINE RATIONAL DOMAINS

Peter Russell

Let k be a field. For any ring R let $R^{(n)}$ denote the polynomial ring in n variables over R. In this paper we investigate affine k-domains A with the property that $A[a / b] \simeq k^{(2)}$ for some $a, b \in A$. By our main result (see 1.3), if A is a unique factorization domain (UFD), then $A \simeq \boldsymbol{k}^{(2)}$ under various fairly mild additional assumptions. A corollary (see 1.4) is the following little piece of information on the "cancellation problem" for $k^{(2)}$ (see [3]): Let k be perfect, A a k-algebra and t transcendental over A. Assume that $A[t] \simeq k^{(3)}$. If a variable in $k^{(3)}$ is linear as a polynomial in t, then $A \simeq k^{(2)}$.

This work was inspired by [9], where the following is shown: Let k be of characteristic $0, A \approx k^{(2)}, a, b \in A$ with $b \neq 0$ and $H=b w-a \in$ $A[w] \simeq k^{(3)}$ such that $A[w] / H A[w]=A[a / b]$ is isomorphic to $k^{(2)}$. Then there exist $F, G \in A[w]$ such that $k[F, G, H]=A[w]$. We extend this result to fields of arbitrary characteristic (see 2.3).

The proof of 1.3 runs like this: An irreducible factor x of b in $k^{(2)}$ contracts to a maximal ideal in A and, since $k^{(2)}$ is generated by one element over A, defines a line in $k^{(2)}$ (i.e. $k^{(2)} \mid x k^{(2)} \simeq k^{(1)}$). The crucial problem lies in showing that there exists $y \in k^{(2)}$ such that $k[x, y]=$ $k^{(2)}$. If char $k=0$, this is assured by [1]. Under suitable restrictions on A (not involving char k), however, we can also reach this conclusion exploiting further the fact that x contracts birationally to a maximal ideal in A. One then shows $A=k[x, b y]$ without much difficulty.

I would like to express my thanks here to W. Heinzer. Numerous conversations with him were instrumental in getting this research off the ground.

We begin with an elementary result.
1.1. Proposition: Let A be a UFD and $a, a^{\prime}, b, b^{\prime} \in A$ with $\operatorname{GCD}(a, b)=1=\operatorname{GCD}\left(a^{\prime}, b^{\prime}\right)$. Suppose $A[a / b]=B=A\left[a^{\prime} / b^{\prime}\right]$. Then
(i) b and b^{\prime} have the same irreducible factors,
(ii) $a^{\prime}=a_{0} b^{\prime}+c a$
$a=a_{0}^{\prime} b+c^{\prime} a^{\prime}$
with $a_{0}, a_{0}^{\prime}, c, c^{\prime} \in A$ and $c c^{\prime} \equiv 1 \bmod G C D\left(b, b^{\prime}\right)$,
(iii) if $b^{\prime}=q b$ with $q \in A$, then a and a^{\prime} are units $\bmod q$ and q is a unit in B.

Proof: We have

$$
\begin{equation*}
\frac{a^{\prime}}{b^{\prime}}=a_{0}+a_{1} \frac{a}{b}+\cdots+a_{n} \frac{a^{n}}{b^{n}} \tag{1}
\end{equation*}
$$

with $a_{i} \in A$. Since $G C D\left(a^{\prime}, b^{\prime}\right)=1, b^{\prime} \mid b^{n}$. Similarly, $b \mid b^{\prime m}$ for some m. This proves (i). From (1) we obtain

$$
\begin{equation*}
a^{\prime}=a_{0} b^{\prime}+c a \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
c=a_{1} \frac{b^{\prime}}{b}+a_{2} a \frac{b^{\prime}}{b^{2}}+\cdots+a_{n} a^{n-1} \frac{b^{\prime}}{b^{n}} \tag{3}
\end{equation*}
$$

Since $c a \in A$ and $\operatorname{GCD}(a, b)=1, c \in A$. Similarly,

$$
\begin{equation*}
a=a_{0}^{\prime} b+c^{\prime} a^{\prime} \tag{2'}
\end{equation*}
$$

with $\quad a_{0}^{\prime}, \quad c^{\prime} \in A$. Now $\quad\left(1-c c^{\prime}\right) a^{\prime}=a_{0} b^{\prime}+c a_{0}^{\prime} b \quad$ and hence $G C D\left(b, b^{\prime}\right) \mid 1-c c^{\prime}$. This proves (ii).

Suppose $b^{\prime}=q b$ with $q \in A$. By (ii), c is a unit $\bmod q$, and we obtain from (3)

$$
c=a_{1} q+a d
$$

with $d \in A$. Hence a is a unit $\bmod q$, and so a^{\prime} is a unit $\bmod q$ by (2). Write $\alpha a^{\prime}=1+\beta q$ with $\alpha, \beta \in A$. Then $b \alpha\left(a^{\prime} / b^{\prime}\right)=1 / q+\beta$ and hence $1 / q \in B$. This proves (iii).
1.2. Corollary: Let p be an irreducible factor of $\operatorname{GCD}\left(b, b^{\prime}\right)$ and suppose the p-orders of b and b^{\prime} are different. Then a and a^{\prime} are units $\bmod p$ in A_{h}, where h is the product of the prime factors of $\operatorname{GCD}\left(b, b^{\prime}\right)$ different from p.

Proof: Replace A by A_{h} and apply (ii).
1.3. Theorem: Let A be a UFD finitely generated over k and a, $b \in A$ with $\operatorname{GCD}(a, b)=1$. Let $B=A[a / b]$ and suppose $B \simeq k^{(2)}$. Assume also that one of the following conditions holds:
(i) A contains a field generator, i.e. there exists $f \in A$ such that $q t A=k(f, q)$ for some $q \in q t A(q t A=$ field of quotients of $A)$,
(ii) $\operatorname{char} k=0$,
(iii) k is perfect and A is regular.

Then $A \simeq k^{(2)}$. More precisely, there exist $x, y \in B$ such that $B=$ $k[x, y], b \in k[x]$ and $A=k[x, b y]$.

Proof: We assume $b \notin k$ and claim (see [9], proof of Lemma 3): ${ }^{(*)}$ Let b_{1}, \ldots, b_{r} be the irreducible factors of b in B. Then $\left(b_{i}, b_{j}\right) B=$ B for $i \neq j, b_{i} B \cap A=M_{i}$ is a maximal ideal, $M_{i} \neq M_{j}$ for $i \neq j$ and $B / b_{i} B \simeq\left(A / M_{i}\right)^{(1)}$. If $c \in B$ is irreducible and $c B \cap A$ a maximal ideal, then $c B=b_{i} B$ for some i.

In fact, if b_{i} is an irreducible factor of b, then $M_{i}=$ $b_{i} B \cap A \supset(a, b) A$, and since $G C D(a, b)=1, M_{i}$ is maximal. Hence $M_{i} B \cap A=M_{i}$ and $B / M_{i} B=A / M_{i}[z]$, where z is the image of a / b $\bmod M_{i} B$. Now $M_{i} B \subset b_{i} B$, so z is transcendental over A / M_{i} and $M_{i} B$ is prime. Hence $M_{i} B=b_{i} B, B / b_{i} B \simeq\left(A / M_{i}\right)^{(1)}$ and $M_{i} \neq M_{i}$, and so $\left(b_{i}, b_{j}\right) B=B$, for $i \neq j$. The last assertion follows from $A_{b}=B_{b}$.

Under each of the conditions (i), (ii), (iii) we will show by different methods:
(**) There exist $x, y \in B$ such that $B=k[x, y]$ and $b \in k[x]$.
Suppose this has been done. Then x is integral over A and hence $x \in A$. Since $A_{b}=B_{b}, b^{m} y \in A$ for some m and there exists $b^{\prime} \in k[x]$ of smallest degree such that $v=b^{\prime} y \in A$. Then b and b^{\prime} have the same irreducible factors (note that these are the same whether taken in $k[x], A$ or B) and $k[x, v]_{b^{\prime}}=A_{b^{\prime}}=k[x, y]_{b^{\prime}}$. Suppose there is an irreducible $c \in A$ such that $c A \cap k[x, v]$ is maximal. Then c is an irreducible factor of b and $v=b^{\prime} y \in c A$. Hence $b^{\prime \prime} y \in A$, where $b^{\prime \prime}=b / c \in k[x]$ is of smaller degree than b^{\prime}, and this is impossible. So no height one prime in A contracts to a maximal ideal in $k[x, v]$ and the birational morphism $\operatorname{Spec} A \rightarrow \operatorname{Spec} k[x, v]$ has finite fibres. By Zariski's Main Theorem (see [6, Cor. 2, p. 42]), it is an open immersion. Since $k[x, v]$ is a UFD, A is a localization of $k[x, v]$, and since the units of A are constant, $k[x, v]=A$. Now $A\left[v / b^{\prime}\right]=k[x, y]=$ $A[a / b]$, and $b=b^{\prime}$ follows from 1.2.

It remains to establish $\left({ }^{* *}\right)$.

Case 1: $f \in A$ is a field generator. We keep the notation of (*). There exist monic polynomials P_{i} with coefficients in k such that $b_{i} \mid P_{i}(f)$ in B (the minimal polynomials of $f \bmod M_{i}$, for instance). Now f is a field generator in $B \simeq k^{(2)}$ as well as in A, and by [8, 3.7 and 4.5] we can find $x, y \in B$ such that $B=k[x, y]$ and (α) the degree form of f is a monomial in x and $y,(\beta) f$ is not tangent to the line at infinity of $k[x, y]$. (Equivalently, $f=x^{m} y^{n}+g$ where $\operatorname{deg} g<m+n$, $\operatorname{deg}_{x} g \leq m, \operatorname{deg}_{y} g \leq n$.) The operations of forming a polynomial (with coefficients in k) and of taking a factor preserve these properties and hence each b_{i} satisfies (α) and (β). On the other hand, since $B / b_{i} B$ is a polynomial ring over a field, the degree form of b_{i} is a monomial in x alone or y alone and hence b_{i} is a polynomial in either x or y. (This argument slightly generalizes [8, 4.8].) Since $\left(b_{i}, b_{j}\right) B=B$ for $i \neq j, x$ and y cannot appear both, and we may assume that each b_{i}, and therefore b, is a polynomial in x.

By Lemma 1.6 below, we can assume that k is algebraically closed in verifying (**) under conditions (ii) and (iii). (Unique factorization will not be used again, and A remains regular over an algebraic closure of k if we assume (iii).)

Case 2: k algebraically closed, char $k=0$. Let $x=b_{1}$ be an irreducible factor of b. Then $B / x B \simeq k^{(1)}$, and by the main result of [1], there exists $y \in B$ such that $B=k[x, y]$. If b_{i} is any other irreducible factor of b, then $b_{i}=\gamma_{i} x+\delta_{i}$ with $\gamma_{i}, \delta_{i} \in k$ since $\left(b_{\imath}, b_{1}\right) B=B$ (see $[9$, Lemma 1]). Hence $b \in k[x]$.

Case 3: k algebraically closed, A regular. Let $x=b_{1}$. As in case 2 , $B / x B \simeq k^{(1)}, b_{i}=\gamma_{i} x+\delta_{i}$ with $\gamma_{i}, \delta_{i} \in k$, and $b \in k[x]$. Hence $x \in A$. Let X and Y be complete non-singular surfaces containing respectively $\operatorname{Spec} B$ and $\operatorname{Spec} A$ as dense open subsets, with $X=\mathbb{P}_{k}^{2}$. The birational morphism $\operatorname{Spec} B \rightarrow \operatorname{Spec} A$ induces a birational map $\varphi: X \rightarrow Y$ and (see [12, part II] or [10, Ch. IV, §3] for basic facts from the theory of birational correspondences of surfaces used below) there exists a nonsingular surface Z and birational morphisms $\varphi_{1}: Z \rightarrow$ $X, \varphi_{2}: Z \rightarrow Y$ such that $\varphi \circ \varphi_{1}=\varphi_{2}$ and φ_{1}, φ_{2} are composites of locally quadratic transformations. (The centres of these we call the fundamental points of φ_{1} and φ_{2} respectively.) Replacing Z, if necessary, by a surface Z^{*} dominated by Z we may assume that
$\left(a_{1}\right)$ no irreducible exceptional curve E of the first kind on Z (this means $E \simeq \mathbb{P}_{k}^{1}$ and $(E, E)=-1$, where $(-,-)$ denotes the intersection pairing) shrinks to a point on both X and Y.

For any curve C on X or Y let C^{\prime} denote its proper transform on
Z. For $\lambda \in k$, let C_{λ} be the curve on X whose ideal in B is $(x-\lambda) B$. Put $d=\operatorname{deg} C_{\lambda}$ and $L=X-\operatorname{Spec} B$. The curves C_{λ} together with $d L$ form a linear pencil $\Lambda=\Lambda(x)$ (see [8, 1.2]). Let $p \in \operatorname{Spec} A \subset Y$ be the closed point with ideal $M_{1}=x B \cap A$ in A. By $\left(^{*}\right), C_{0}^{\prime} \subset \varphi_{2}^{-1}(p)$. Let E be an irreducible component of $\varphi_{2}^{-1}(p)$ such that $(E, E)=-1$. Then $E \neq L^{\prime}$. In fact,
($\left.\mathrm{a}_{2}\right) \varphi_{2}\left(L^{\prime}\right) \subset Y-\operatorname{Spec} A$.
Otherwise $\varphi_{2}\left(D^{\prime}\right) \subset \operatorname{Spec} A$ for almost all lines $D \subset X=\mathbb{P}^{2}$ and $\operatorname{Spec} A$ carries a complete curve, which is impossible. Also, E does not contract to a point on X by $\left(a_{1}\right)$ and hence $E=C^{\prime}$, where $C \subset X$ is an irreducible curve such that $C \cap \operatorname{Spec} B \neq \emptyset$. By (${ }^{*}$), $C=C_{0}$ and hence
$\left(\mathrm{a}_{3}\right)\left(C_{0}^{\prime}, C_{0}^{\prime}\right)=-1$ and C_{0}^{\prime} is the only irreducible component of $\varphi_{2}^{-1}(p)$ with this property.

For general $\lambda \in k, \varphi_{2}\left(C_{\lambda}^{\prime}\right)$ is a curve on Y whose ideal in A is $I_{\lambda}=(x-\lambda) B \cap A$. Since $x \in M_{1} \subset A$, we have $x-\lambda \in I_{\lambda}$ and $I_{\lambda} \not \subset M_{1}$. Hence $p \notin \varphi_{2}\left(C_{\lambda}^{\prime}\right)$ and
$\left(\mathrm{a}_{4}\right)$ no base point of Λ (see $[8,2.5]$) is on C_{0}^{\prime}.
Let q_{1}, \ldots, q_{s} be the base points of Λ, let $\nu_{i}=\mu\left(\Lambda, q_{i}\right)$ (see $[8,2.5]$, this is the multiplicity at q_{i} of the proper transform of a general member of Λ) and $\mu_{i}=\mu\left(C_{0}, q_{i}\right)$ (see [8,2.3], this is the multiplicity at q_{i} of the proper transform of C_{0}). Note $\nu_{i} \geq 1$ and $\mu_{i} \geq 0$. By (a_{4}), all q_{i} with $\mu_{i}>0$ are fundamental points of φ_{1}. By $\left(\mathrm{a}_{3}\right)$, and since $\left(C_{0}, C_{0}\right)=$ $d^{2}, \Sigma \mu_{i}^{2} \leq d^{2}+1$. Intersecting C_{0} with a general member C_{λ} of Λ we find $\Sigma \mu_{i} \nu_{i}=d^{2}$. Also, since Λ is a pencil, $\Sigma \nu_{i}^{2}=d^{2}$ (see [8, 2.10]). By Schwarz's inequality, $\Sigma \mu_{i}^{2} \geq d^{2}$. If $\Sigma \mu_{i}^{2}=d^{2}+1$, then $\Sigma \nu_{i}\left(\mu_{i}-\nu_{i}\right)=0$ and $\Sigma\left(\mu_{i}-\nu_{i}\right)^{2}=1$, which cannot be satisfied in integers μ_{i}, ν_{i} with $\nu_{i} \geq 1$. Hence $\Sigma \mu_{i}^{2}=d^{2}$ and $\mu_{i}=\nu_{i}$ for all i. Since $C_{0}^{\prime} \simeq \mathbb{P}_{k}^{1}$, any multiple point of C_{0} is a fundamental point of φ_{1} and hence one of the q_{i}. For if not, $\left(C_{0}^{\prime}, C_{0}^{\prime}\right) \leq d^{2}-\Sigma \mu_{i}^{2}-4 \leq-4$ in contradiction to $\left(\mathrm{a}_{3}\right)$. Hence $\Sigma \mu_{i}\left(\mu_{i}-1\right)=(d-1)(d-2)=\Sigma \nu_{i}\left(\nu_{i}-1\right)$ and the generic member Λ_{η} of Λ is a curve of genus zero over $k(x)$ (see [8, 2.8 and 2.11]). Since k is algebraically closed, Λ_{η} is a rational curve, i.e. $q t B$, the function field of Λ_{η}, is purely transcendental over $k(x)$. (There is a conic in $\mathbb{P}_{k(x)}^{2}$ birationally equivalent to Λ_{η} (see [2, Ch. II, §6]). By Tsen's Theorem, Λ_{η} has a place rational over $k(x)$ (see [11, Ch. II, 3.2 and 3.3]) and hence is rational (see [2, Ch. II, §3]).) Equivalently, x is a field generator in B, and by $[8,4.8]$ there exists $y \in B$ such that $B=k[x, y]$.
1.4. Corollary: Let k be perfect, A a k-algebra, t transcendental over A and assume $A[t]=k[x, y, z] \simeq k^{(3)}$. Assume also that $z=b t-a$ with $a, b \in A$. Then $A \simeq k^{(2)}$.

Proof: If $b=0$, the result is proven in [3, Theorem 4.1]. If $b \neq 0$, the homomorphism $\sigma: A \rightarrow A[t] \rightarrow A[t] / z A[t]=B$ is injective. Clearly A is a regular UFD finitely generated over k and $\operatorname{GCD}(a, b)=1$. Identifying A with $\sigma(A)$ we have $B \simeq A[a / b]$. By 1.3 (iii), $A \simeq k^{(2)}$.
1.5. Lemma: Let k^{\prime} / k be a separable algebraic extension. Let $x \in$ $B \simeq k^{(2)}$ such that $B \otimes_{k} k^{\prime}=k^{\prime}\left[x, y^{\prime}\right]$ for some $y^{\prime} \in B \otimes_{k} k^{\prime}$. Then there exists $y \in B$ such that $B=k[x, y]$.

Proof: Let t be transcendental over k and put $R=$ $B \otimes_{k} k(t) /(x-t) B \otimes_{k} k(t)$. Then $R \otimes_{k(t)} k^{\prime}(t) \simeq k^{\prime}(t)^{(1)}$, and since $k^{\prime}(t) / k(t)$ is separable, $R \simeq k(t)^{(1)}$, as is well known (see [7, 1.1]). Hence x is a field generator (see [8, 1.3]) and we can apply [8, 4.8].
1.6. Lemma: Let k^{\prime} / k be a separable algebraic extension. Let $b \in$ $B \simeq k^{(2)}$ such that there exist $x^{\prime}, y^{\prime} \in B \otimes_{k} k^{\prime}$ with $B \otimes_{k} k^{\prime}=k^{\prime}\left[x^{\prime}, y^{\prime}\right]$ and $b \in k^{\prime}\left[x^{\prime}\right]$. Then there exist $x, y \in B$ such that $B=k[x, y]$ and $b \in k[x]$.

Proof: We can find $\alpha, \beta \in k^{\prime}, \alpha \neq 0$, such that $\alpha x^{\prime}+\beta \in B$. The proof is the same as the proof of Corollary 1 of [9]. Put $x=\alpha x^{\prime}+\beta$. Then $k^{\prime}\left[x, y^{\prime}\right]=k^{\prime}\left[x^{\prime}, y^{\prime}\right]$ and $b \in k^{\prime}[x] \cap B=k[x]$. The existence of y such that $B=k[x, y]$ follows from 1.5.

2

In this section we extend the result of [9] on "linear planes" to fields of arbitrary characteristic. It is possible to do this, once 1.3 is established, by referring to details in the proof of [9]. It may be worthwhile, nevertheless, to write down an argument more directly adapted to our line of reasoning. Also, 2.2 below (which, more or less, can be found hidden in [9]), giving a construction for somewhat unfamiliar (since in general not "tame") automorphisms of the polynomial ring $R^{(2)}$, where R is any commutative ring, deserves to be mentioned explicitly.

We record the following well known facts (see also the remark after Lemma 5 in [9]):
2.1. Let S be a commutative ring and $\alpha \in S[T] \simeq S^{(1)}, \alpha=\Sigma \alpha_{i} T^{i}$ with $\alpha_{i} \in S$. Then
(i) α is nilpotent $\Leftrightarrow \alpha_{i}$ is nilpotent for all i,
(ii) α is a unit $\Leftrightarrow \alpha_{0}$ is a unit and α_{i} is nilpotent for $i \geq 1$,
(iii) $S[\alpha]=S[T] \Leftrightarrow \alpha_{1}$ is a unit and α_{i} is nilpotent for $i \geq 2$.
2.2. Proposition: Let R be a commutative ring, $b \in R, \alpha=$ $\Sigma \alpha_{i} v^{i} \in R[v] \simeq R^{(1)}$ with $\alpha_{i} \in R$, and $H=b w+\alpha \in R[v, w] \simeq R^{(2)}$. Assume that α_{1} is a unit $\bmod b R$ and that α_{i} is nilpotent $\bmod b R$ for $i \geq 2$. Then there exists $\varphi(T) \in R[T]$ such that $\varphi(\alpha) \equiv v \bmod b R[v]$. For any such φ,

$$
\varphi(H)=v+b G
$$

with $G \in R[v, w]$. Moreover,

$$
R[G, H]=R[v, w] .
$$

Proof: The existence of φ follows from 2.1(iii) applied to $S=$ $R / b R$. Let $\varphi(T)=\Sigma_{i \geq 0} \beta_{i} T^{i}$ with $\beta_{i} \in R$. Then $\alpha_{1} \beta_{1}-1$ and the β_{i} for $i \geq 2$ are nilpotent $\bmod b$. Write

$$
\varphi(\alpha)=v+b \beta
$$

with $\beta \in R[v]$. We have

$$
\varphi(H)=\varphi(\alpha+b w)=\sum_{i \geq 0} \varphi^{(i)}(\alpha) b^{i} w^{i},
$$

where $\left.\varphi^{(i)}(T)=\Sigma_{j \geq i}{ }_{(i)}^{i}\right) \beta_{j} T^{j-i}$. Hence $\varphi(H)=v+b \beta+b w P$ with

$$
P=\sum_{i \geq 1} \varphi^{(i)}(\alpha) b^{i-1} w^{i-1}
$$

So $\varphi(H)$ is of the desired form with

$$
G=\beta+w P .
$$

Moreover, $\varphi^{(1)}(\alpha)$ is a unit $\bmod b$ and $\varphi^{(i)}(\alpha)$ is nilpotent $\bmod b$ for $i \geq 2$. Hence P is a unit $\bmod b$ in $R[v, b w]$ (apply 2.1(ii) to $S=R[v] / b R[v])$ and there exist $Q, Q_{1} \in R[v, b w]$ such that $P Q=$ $1+b Q_{1}$. Then $w=(G-\beta) Q-w b Q_{1}$. Clearly $v=\varphi(H)-b G \in$ $R[G, H]$ and hence $b w=H-\alpha \in R[G, H]$. It follows that β, Q, $Q_{1} \in R[G, H]$. Hence $w \in R[G, H]$.
2.3. Theorem: Let k be a field, $a, b \in A \simeq k^{(2)}$ with $b \neq 0$, and $H=b w-a \in A[w] \simeq k^{(3)}$. Suppose $A[w] / H A[w] \simeq k^{(2)}$. Then there exist $u, v \in A$ such that $A=k[u, v], b \in k[u]$ and $a-v$ is nilpotent
$\bmod b A$. Moreover, there exists $G \in A[w]=k[u, v, w]$ such that $k[u, v, w]=k[u, G, H]$.

Proof: Let $B=A[a / b]$. Then $B \simeq A[w] / H A[w] \simeq k^{(2)}$. Clearly $\operatorname{GCD}(a, b)=1$. Also, A contains a field generator, and by 1.3(i), we can find $x, y \in B$ such that $B=k[x, y], b \in k[x]$ and $A=k[x, b y]$. Put $u=x$ and $v^{\prime}=b y$. Then $B=A\left[v^{\prime} \mid b\right]$, and by 1.1(ii), $a=a_{0} b+c v^{\prime}$ where $a_{0}, c \in A$ and c is a unit $\bmod b$. By $2.1($ ii $), c=\sum c_{i} v^{\prime i}$ with $c_{i} \in k[u], c_{0}$ a unit $\bmod b$ and c_{i} nilpotent $\bmod b$ for $i \geq 1$. Finally, $c_{0}=\Sigma \gamma_{i} u^{i}$ with $\gamma_{i} \in k, \gamma_{0} \neq 0$ and $c_{0}-\gamma_{0}$ nilpotent $\bmod b$. Put $v=$ $\gamma_{0} v^{\prime}$. Then $a-v$ is nilpotent $\bmod b$. The existence of G follows from 2.2 applied to $R=k[u]$.

The conditions under which we proved 1.3 may not be the best possible. Unique factorization for A, however, is essential. For an easy example, consider

$$
\begin{equation*}
A=k\left[x, x y, x y^{2}\right] \subset B=k[x, y]=A\left[\frac{x y}{x}\right] \tag{3.1}
\end{equation*}
$$

Also, it does not help to assume that A is regular, as the next example shows (which the author learned from W. Heinzer).

$$
\begin{equation*}
A=k\left[u, v, \frac{v(v-1)}{u}\right] \subset B=k[x, y]=A\left[\frac{v}{u}\right] \tag{3.2}
\end{equation*}
$$

where $u=x$ and $v=x y$.
Here $\operatorname{Spec} B \rightarrow \operatorname{Spec} A$ is an open immersion, and this is typical in a way. For we have
3.3. Theorem: Let k be perfect, A a finitely generated regular k-domain and $a, b \in A$ with $b \neq 0$. Assume $B=A[a / b] \simeq k^{(2)}$. Then there exist $x, y \in B$ and $b^{\prime} \in k[x]$ such that $B=k[x, y]$, $A \subset k\left[x, b^{\prime} y\right]=B^{\prime}$ and $\operatorname{Spec} B^{\prime} \rightarrow \operatorname{Spec} A$ is an open immersion.

Proof: Not all irreducible factors of b in B now necessarily contract to maximal ideals in A, but the claim (*) we made in the proof of 1.3 holds for those irreducible factors b_{1}, \ldots, b_{r} that do. If there are none, we are done by Zariski's Main Theorem. Otherwise we can, exactly as under condition (iii) of 1.3 , find $x, y \in B$ with $B=k[x, y]$ and $b_{i} \in k[x]$ for all i. We claim $A \subset k\left[x, b_{i} y\right]$, and to finish
the proof of the theorem we choose $b^{\prime} \in k[x]$ of maximal degree such that $A \subset k\left[x, b^{\prime} y\right]$. It will be enough to establish the claim in case k is algebraically closed. For then, if $b_{i 1}, \ldots, b_{i s}$ are the (distinct) irreducible factors of b_{i} in $k^{\prime}[x, y]=B^{\prime}$, where k^{\prime} is an algebraic closure of k, we have $b_{i 1}=b_{i} \cdots b_{i s}$, each $b_{i j}$ contracts to a maximal ideal in $A^{\prime}=A \otimes_{k} k^{\prime}$ and $A^{\prime} \subset k^{\prime}\left[x, b_{i j} y\right]$ for all j. Hence $A^{\prime} \subset k^{\prime}\left[x, b_{i} y\right]$ and $A \subset k^{\prime}\left[x, b_{i} y\right] \cap k[x, y]=k\left[x, b_{i} y\right]$.

Let then k be algebraically closed. We may set $x=b_{1}$. Let

$\operatorname{Spec} B \subset X \underset{\varphi}{\longrightarrow} Y \supset \operatorname{Spec} A$
be as in case 3 of the proof of 1.3, with the embedding $\operatorname{Spec} B \subset X=$ \mathbb{P}^{2} so chosen that C_{0}, the curve whose ideal in B is $x B$, has degree $d=1$. Let $\sigma_{1}: Z_{1} \rightarrow X$ be the locally quadratic transformation with centre $p_{1}=C_{0} \cap L(L=X-\operatorname{Spec} B), E_{1}=\sigma_{1}^{-1}\left(p_{1}\right)$ and $\sigma_{2}: Z_{2} \rightarrow Z_{1}$ the locally quadratic transformation with centre $p_{2}=C_{0}^{(1)} \cap E_{1}$, where $C_{0}^{(1)}$ is the proper transform of C_{0} on Z_{1}. The proper transform on Z_{2} of a curve C on X or Z_{1} will be denoted by $C^{(2)}$, and the proper transform on Z of a curve C on X, Z_{1} or Z_{2} by C^{\prime}. Put $\sigma=\sigma_{1} \circ \sigma_{2}$. Since $\left(C_{0}^{\prime}, C_{0}^{\prime}\right)=-1\left(\right.$ see $\left(a_{3}\right)$ in the proof of case 3$)$ and since there are no fundamental points of φ_{1} on $\operatorname{Spec} B, p_{1}$ and p_{2} are precisely the fundamental points of φ_{1} on C_{0}. It follows that there exists a morphism $\psi: Z \rightarrow Z_{2}$ such that $\varphi_{1}=\sigma \circ \psi$. We have, putting $E_{2}=\sigma_{2}^{-1}\left(p_{2}\right)$, $\left(\mathrm{b}_{1}\right) \sigma^{-1}\left(C_{0} \cup L\right)=C_{0}^{(2)} \cup E_{2} \cup E_{1}^{(2)} \cup L^{(2)}$
with $C_{0}^{(2)}$ and E_{2}, E_{2} and $E_{1}^{(2)}, E_{1}^{(2)}$ and $L^{(2)}$ meeting normally in one point and all other intersections empty.

There are no fundamental points of ψ on $C_{0}^{(2)}$ and hence $\rho=\varphi \circ \sigma$ is a morphism in a neighbourhood of $C_{0}^{(2)}$. In particular, since C_{0} contracts to a point in $\operatorname{Spec} A$,
$\left(b_{2}\right) \rho\left(E_{2}\right) \cap \operatorname{Spec} A \neq \emptyset$.
We claim that there are no fundamental points of ψ on $E_{2}-E_{1}^{(2)}$. In fact, $F=Y-\operatorname{Spec} A$ is connected (see [4, Ch. II, 6.2]) and hence
$\left(\mathrm{b}_{3}\right) \varphi_{2}^{-1}(F)$ is connected.
Since $\quad \varphi$ is a morphism on $\operatorname{Spec} B, \quad \varphi_{2}^{-1}(F) \subset \varphi_{1}^{-1}(L)=$ $\psi^{-1}\left(E_{2} \cup E_{1}^{(2)} \cup L^{(2)}\right)$. Now $L^{\prime} \subset \varphi_{2}^{-1}(F)$ by $\left(\mathrm{a}_{2}\right)$, but $E_{2}^{\prime} \not \subset \varphi_{2}^{-1}(F)$ by $\left(\mathrm{b}_{2}\right)$. It follows from $\left(b_{1}\right)$ and $\left(b_{3}\right)$ that if $q \in E_{2}-E_{1}^{(2)}$ is a fundamental point
of ψ, then $\psi^{-1}(q) \cap \varphi^{-1}(F)=\emptyset$. Hence $\varphi_{2}\left(\psi^{-1}(q)\right) \subset \operatorname{Spec} A$ and therefore is a point, and this contradicts $\left(\mathrm{a}_{1}\right)$.

By what we have shown, ρ is a morphism on $Z_{2}-\left(E_{1}^{(2)} \cup L^{(2)}\right)$. Let $\tau: Z_{2} \rightarrow X_{1}$ be the contraction of $C_{0}^{(2)}$. (Note $\left(C_{0}^{(2)}, C_{0}^{(2)}\right)=-1$ and $C_{0}^{(2)} \simeq \mathbb{P}_{k}^{1} . X_{1}$ is isomorphic to the ruled surface F_{2}.) Let $\rho=\rho^{\prime} \circ \tau$. Then ρ^{\prime} is a morphism on $U=X_{1}-\tau\left(E_{1}^{(2)} \cup L^{(2)}\right)$. Also τ 。 $\sigma^{-1}(\operatorname{Spec} B) \subset U$. It is easily verified that U is affine and that $\Gamma(U)=$ $k[x, x y](\Gamma(U)=$ ring of functions defined on $U)$. Hence $A \subset k[x, x y]$.
3.4. Remark: The proof given above actually shows:

Let k be perfect, A a finitely generated regular k-domain, $A \subset B \simeq$ $k^{(2)}$ with $q t A=q t B$. Let $x \in B$ such that $x B \cap A$ is maximal and $B / x B \simeq k^{(1)}$. Let X, Y, Z be as above. If the proper transform on Z of the curve on X defined by x is exceptional of the first kind (briefly, " x shrinks first"; one can see that this is independent of the choice of X, Y, and Z as long as Z satisfies (a_{1})) then there exists $y \in B$ such that $B=k[x, y]$ and $A \subset k[x, x y]$. The example

$$
A=k\left[x y, x y^{2}\right] \subset k[x, y] \subset B
$$

shows that it is not enough to assume that $x B \cap A$ is maximal. (Here y has to shrink before x can shrink.)
3.5. Remark: Suppose $A[t]=k[x, y, z]$ as in 1.4. One may ask what information our methods give if, say, $t=b z-a$ with $a, b \in$ $k[x, y], b \neq 0$. Not much, unfortunately. We have $k[x, y, a / b]=A$, but this does not guarantee $A \simeq k^{(2)}$ under the best of conditions for A, as we will see. If f is an irreducible factor of b in A, then $A / f A \simeq k^{(1)}$ (assume k is algebraically closed), so $k[x, y, z] / f k[x, y, z] \simeq k^{(2)}$. If f is linear in x, y or z, we can use 2.3 and refer to [3, 4.1], but there is no reason why it should.

Now put $a=x$ and let $b \in k[x, y]=B$ be irreducible such that $(x, b) B=(x, y) B=M$ and $B / b B \neq k^{(1)}$ (for instance $b=x y^{2}+y+x^{2}$). Let $A=B[a / b]$. It is easily checked that A is regular with constant units. Also, $b A \cap B \supset(x, b) B=M$, so $b A \cap B=M$ and $A / b A \simeq k^{(1)}$. Hence $b A$ is prime. Since $A_{b}=B_{b}$ is a UFD, A is a UFD (see [5]). On the other hand, $A \neq k^{(2)}$, for otherwise $B / b B \simeq k^{(1)}$ by 1.3.
3.6. Remark: 1.5 remains true for purely inseparable extensions k^{\prime} / k if $B / x B \simeq k^{(1)}$ is included in the assumptions. (The proof is more complicated.) Otherwise the conclusion is false in general. In fact, let char $k=p>0$ and $x=v^{p}+u+\alpha u^{p} \in B=k[u, v]$ with $\alpha \in k-k^{p}$. Then $B / x B \neq k^{(1)}$ (see [7]) and $k[x, y] \neq B$ for all $y \in B$, but $k^{\prime}[u, v]=$
$k^{\prime}[x, v+\beta u]$, where $\beta^{p}=\alpha$ and $k^{\prime}=k(\beta)$. This also shows, with $b=x$, that 1.6 may fail if k^{\prime} / k is not separable. More interesting in the present context is the fact that it does not help to assume $B / b B \simeq K^{(1)}$, where K is a field. For let $b=x^{p}-\alpha$. If b is a polynomial in some $w \in k[u, v]$, then clearly w is a power of $\gamma x+\delta$ with $\gamma, \delta \in k$, and again $B / w B \neq k^{(1)}$. However, letting ${ }^{-}$denote residues $\bmod b$, we have $\bar{x}=(\bar{v}+\bar{x} \bar{u})^{p}+\bar{u}$ and hence $B / b B=k[\bar{x}, \bar{v}+\bar{x} \bar{u}]=k^{\prime}[\bar{v}+\bar{x} \bar{u}] \simeq \boldsymbol{k}^{\prime(1)}$.
3.7. Remark: If char $k=p>0$, there exists $a \in A=k[u, v] \simeq k^{(2)}$ such that $A / a A \simeq k^{(1)}$, but $A \neq k[a, y]$ for all $y \in A$, e.g. $a=$ $u^{p^{2}}+v+v^{r p}$, with $r>1, G C D(r, p)=1$ (see the introduction of [1]). One deduces easily that the assumption $b \neq 0$ in 2.3 cannot be dropped.

We conclude by raising two questions suggested by the proof of 1.3.
3.8. Question: If A is a finitely generated k-domain such that $q t A \simeq q t k^{(2)}$, when does A contain a field generator? One should assume that the units of A are constant and may want to impose additional conditions, such as, in some combination,
(i) $A \subset k[x, y] \simeq k^{(2)}$ with $q t A=k(x, y)$,
(i') $A[a / b]=k[x, y]$ for some $a, b \in A$,
(ii) A is regular,
(iii) A is a UFD.
3.9. Question: Let $f \in B \simeq k^{(2)}$ be irreducible. When does there exist a regular k-domain (regular UFD) $A \subset B$ with $q t A=q t B$ such that $f B$ contracts to a maximal ideal in A ? (Clearly, if k is algebraically closed, $\operatorname{Spec} B / f B$ is a nonsingular rational curve, but what else?) One could require in addition that $f B$ is the only height 1 prime in B contracting to a maximal ideal, or, somewhat weaker, that f has the property of x in 3.4 of "shrinking first".

REFERENCES

[1] S. S. Abhyankar and T.-T. Moh: Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975) 148-166.
[2] C. Chevalley: Algebraic functions of one variable. Mathematical Surveys No. VI. Am. Math. Soc., New York, 1951.
[3] P. Eakin and W. Heinzer: A cancellation problem for rings, Conference on commutative algebra. Lecture Notes in Mathematics 311. Springer, Berlin-Heidel-berg-New York, 1973.
[4] R. Hartshorne: Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics 156. Springer, Berlin-Heidelberg-New York, 1970.
[5] M. Nagata: A remark on the unique factorization theorem. J. Math. Soc. Japan 9 (1957) 143-145.
[6] M. Raynaud: Anneaux locaux Henséliens. Lecture Notes in Mathematics 169. Springer, Berlin-Heidelberg-New York, 1970.
[7] P. Russell: Forms of the affine line and its additive groups. Pacific J. Math. 32, No. 2. 527-239 (1970).
[8] P. Russell: Field generators in two variables. J. Math. Kyoto Univ. 15-3 (1975) 555-571.
[9] A. Sathaye: On linear planes (in Proc. Amer. Math. Soc.)
[10] J. R. Schafarewitsch: Grundzüge der algebraischen Geometrie. Vieweg, Braunschweig, 1972.
[11] J.-P. Serre: Cohomologie Galoisienne. Lecture Notes in Mathematics 5. Springer, Berlin-Göttingen-Heidelberg-New York, 1964.
[12] O. ZARISKI: Introduction to the problem of minimal models in the theory of algebraic surfaces. Publications of the Mathematical Society of Japan 4, 1958.
(Oblatum 1-IX-1975)
Department of Mathematics
McGill University
Montreal P.Q.
Canada

