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SIMPLE BIRATIONAL EXTENSIONS OF TWO DIMENSIONAL
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Noordhoff International Publishing
Printed in the Netherlands

Let k be a field. For any ring R let R(n) denote the polynomial ring
in n variables over R. In this paper we investigate affine k-domains A
with the property that A[a/b] = k(2) for some a, b E A. By our main
result (see 1.3), if A is a unique factorization domain (UFD), then
A ~ k(2) under various fairly mild additional assumptions. A corollary
(see 1.4) is the following little piece of information on the "can-
cellation problem" for k(2) (see [3]): Let k be perfect, A a k-algebra
and t transcendental over A. Assume that A[t] xi k(3). If a variable in
k(3) is linear as a polynomial in t, then A Ioe k(2).
This work was inspired by [9], where the following is shown: Let k

be of characteristic 0, A = k(2), a, b E A with b ~ 0 and H = bw - a E
A[w] = k(3) such that A[w]/HA[w] = A[a/b] is isomorphic to k(2).

Then there exist F, G E A[w] ] such that k[F,G,H] = A[w]. We ex-
tend this result to fields of arbitrary characteristic (see 2.3).
The proof of 1.3 runs like this: An irreducible factor x of b in k (2)

contracts to a maximal ideal in A and, since k (2) is generated by one
element over A, defines a line in k (2) (i.e. k(2)/xk(2) ~ kil’). The crucial
problem lies in showing that there exists y E k(2) such that k[x, y] ]=
k(2). If char k = 0, this is assured by [1]. Under suitable restrictions on
A (not involving char k), however, we can also reach this conclusion
exploiting further the fact that x contracts birationally to a maximal
ideal in A. One then shows A = k[x, by] without much difficulty.

1 would like to express my thanks here to W. Heinzer. Numerous

conversations with him were instrumental in getting this research off
the ground.
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1

We begin with an elementary result.

1.1. PROPOSITION: Let A be a UFD and a, a’, b, b’ E A with

GCD(a, b) = 1 = GCD(a’, b’). Suppose A[alb] = B = A[a’/b’]. Then
(i) b and b’ have the same irreducible factors,
(ii) a’ = aob’ + ca

a = a’ob + c’ a’
with ao, a’o, c, c’ E A and cc’ ~ 1 mod GcD(b, b’),

(iii) if b’ = qb with q E A, then a and a’ are units mod q and q is a
unit in B.

PROOF : We have

with ai ~ A. Since GCD(a ,b’) = 1, b’l bn. Similarly, b 1 b’- for some
m. This proves (i). From (1) we obtain

where

Since ca E A and GCD(a, b) = 1, c E A. Similarly,

with a’o , c’ E A. Now ( 1- cc’)a’ = aob’ + ca’ob and hence

GCD(b, b’)|1 2014 cc’. This proves (ii).
Suppose b’ = qb with q E A. By (ii), c is a unit mod q, and we

obtain from (3)

with d E A. Hence a is a unit mod q, and so a’ is a unit mod q by (2).
Write 03B1a’ = 1 + 03B2q with a, 03B2 ~ A. Then b 03B1(a’/b’) = 1/q + 03B2 and

hence 1/q E B. This proves (iii).

1.2. COROLLARY: Let p be an irreducible factor of GCD(b, b’ ) and
suppose the p-orders of b and b’ are different. Then a and a’ are units
mod p in Ah, where h is the product of the prime factors of GCD(b, b’)
different from p.
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PROOF: Replace A by Ah and apply (ii ).

1.3. THEOREM: Let A be a UFD finitely generated over k and a,
b E A with GCD(a,b) = 1. Let B = A[a/b] and suppose B===k(2).

Assume also that one of the following conditions holds :
(i) A contains a field generator, i.e. there exists f E A such that

qtA = k(f, q) for some q E qtA (qtA = field of quotients of A),
(ii) char k = 0,
(iii) k is perfect and A is regular.
Then A ~ k(2). More precisely, there exist x, y E B such that B =

k[x, y], b E k[x] and A = k[x, by].

PROOF: We assume b ~ k and claim (see [9], proof of Lemma 3):
(*) Let b1, . . ., br. be the irreducible factors of b in B. Then (bi, b;)B =
B for i ~ j, biB n A = Mi is a maximal ideal, Mi ~ Mj for i ~ j and
BlbiB c--- (AIMi)(1). If c E B is irreducible and cB n A a maximal ideal,
then cB = biB for some i.

In fact, if bi is an irreducible factor of b, then Mi =
biB n A ~ (a, b)A, and since GCD(a, b) = 1, Mi is maximal. Hence

miB n A = M, and B/MiB = AIMi[z], where z is the image of alb
mod MiB. Now MiB C biB, so z is transcendental over A/Mi and MiB
is prime. Hence MiB = biB, BIbiB ~ (A/Mi)(1) and Mi ~ Mi, and so
(bi, bj)B = B, for i ~ j. The last assertion follows from Ab = Bb.
Under each of the conditions (i), (ii), (iii) we will show by différent

methods:

(**) There exist x, y E B such that B = k[x, y] ] and b E k[x].

Suppose this has been done. Then x is integral over A and hence
x E A. Since Ab = Bb, b m y E A for some m and there exists b’ E k[x] ]
of smallest degree such that v = b’ y E A. Then b and b’ have the
same irreducible factors (note that these are the same whether taken
in k[x], A or B) and k[x,v] b’ = Ab’ = k [x, y] b’ . Suppose there is an

irreducible c E A such that cA ~ k[x,u] ] is maximal. Then c is an

irreducible factor of b and v = b’y ~ cA. Hence b "y E A, where
b" = b/c E k[x] is of smaller degree than b’, and this is impossible. So
no height one prime in A contracts to a maximal ideal in k[x, v] and
the birational morphism Spec A ~ Spec k[x, v] has finite fibres. By
Zariski’s Main Theorem (see [6, Cor. 2, p. 42]), it is an open immer-

sion. Since k [x, 03C5] is a UFD, A is a localization of k [x, v ], and since
the units of A are constant, k[x,v] = A. Now A [v/b’] = k[x,y] =
A[a/b], and b = b’ follows from 1.2.

It remains to establish (**).
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Case 1: f E A is a field generator. We keep the notation of (*).
There exist monic polynomials Pi with coefficients in k such that

bi|Pi (f) in B (the minimal polynomials of f mod Ma, for instance).
Now f is a field generator in B ~ k(2) as well as in A, and by [8, 3.7 and

4.5] we can find x, y E B such that B = k[x, y] ] and (a ) the degree
form of f is a monomial in x and y, (03B2) f is not tangent to the line at

infinity of k[x, y]. (Equivalently, f = xmy" + g where deg g  m + n,
degx g ~ m, degy g ~ n.) The operations of f orming a polynomial (with
coefficients in k) and of taking a factor preserve these properties and
hence each bi satisfies (03B1) and (03B2). On the other hand, since B/biB is a

polynomial ring over a field, the degree form of bi is a monomial in x
alone or y alone and hence bi is a polynomial in either x or y. (This
argument slightly generalizes [8, 4.8].) Since (bi, b;)B = B for  i ~j, x
and y cannot appear both, and we may assume that each bi, and

therefore b, is a polynomial in x.

By Lemma 1.6 below, we can assume that k is algebraically closed
in verifying (**) under conditions (ii) and (iii). (Unique factorization
will not be used again, and A remains regular over an algebraic
closure of k if we assume (iii).)

Case 2: k algebraically closed, char k = 0. Let x == b1 be an ir-

reducible factor of b. Then B/xB ~ k(1), and by the main result of [1],
there exists y E B such that B = k[x, y]. If bi is any other irreducible
factor of b, then bi = yix + Si with y;, Si E k since (b,, bi)B = B (see [9,
Lemma 1]). Hence b E k[x].

Case 3: k algebraically closed, A regular. Let x = b1. As in case 2,
B/xB = k(1), bi = yix +,Si with yi, Si E k, and b E k[x]. Hence x E A.
Let X and Y be complete non-singular surfaces containing respec-
tively Spec B and Spec A as dense open subsets, with X = P2k. The
birational morphism Spec B-SpecA induces a birational map

ç : X ~ Y and (see [12, part II] or [10, Ch. IV, § 3] for basic facts from
the theory of birational correspondences of surfaces used below)
there exists a nonsingular surface Z and birational morphisms ~1 : Z ~
X, ~2 :Z ~ Y such that ~ ° ~1 = ~ and ~1, CP2 are composites of

locally quadratic transformations. (The centres of these we call the
fundamental points of çi and ’P2 respectively.) Replacing Z, if neces-
sary, by a surface Z* dominated by Z we may assume that

(ai) no irreducible exceptional curve E of the first kind on Z (this
means E = Pl k and (E, E) = - 1, where (-, -) denotes the intersection
pairing) shrinks to a point on both X and Y.
For any curve C on X or Y let C’ denote its proper transform on
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Z. For À E k, let C, be the curve on X whose ideal in B is (x - 03BB)B.
Put d = deg Cx and L = X - Spec B. The curves C, together with dL
form a linear pencil A = 039B (x) (see [8, 1.2]). Let p E Spec A C Y be
the closed point with ideal Mi = xB n A in A. By (*), Cl C cp 2 -’(p). Let
E be an irreducible component of ~-12(p) such that (E, E) = 2013 1. Then
E ;;é L ’. In fact,

(a2) ~2(L’) C Y - Spec A.

Otherwise ~2(D’) C Spec A for almost all lines D C X p2 and

Spec A carries a complete curve, which is impossible. Also, E does
not contract to a point on X by (03B11) and hence E = C’, where C C X
is an irreducible curve such that C n Spec B 4 0. By (*), C = Co and
hence

(a3) (Cl, Cl) = - 1 and Cl is the only irreducible component of ’P21(p)
with this property.

For general À E k, ~2(C’03BB) is a curve on Y whose ideal in A is

Ix = (x - 03BB)B rl A. Since x E Mi C A, we have x - À E Ix and I03BB ~ Mi.
Hence p ~ ~2(C’03BB) and

(a4) no base point of A (see [8, 2.5]) is on C’o.

Let q1, . . ., qs be the base points of A, let vi = 03BC (039B, qi) (see [8, 2.5],
this is the multiplicity at qi of the proper transform of a general
member of 039B) and 03BCi = 03BC(Co, qi) (see [8, 2.3], this is the multiplicity at
qi of the proper transform of Co). Note vi ~ 1 and i£i ~ 0. By (a4), all qi
with gi &#x3E; 0 are fundamental points of ’P 1. By (a3)’ and since (Co, Co) =
d2, ~ 03BC2i ~ d2 + 1. Intersecting Co with a general member C, of A we
find Y- iiivi = d2. Also, since A is a pencil, 1 V2 = d2 (see [8, 2.10]). By
Schwarz’s inequality, 2 03BC2i ~ d2. If y Il 2= d2 + 1, then 1 vi (03BCi 2014 vi) = 0
and 1 (03BCi 2014 Pi)’ = 1, which cannot be satisfied in integers iii, vi with

-vi 1. Hence ~ 03BC2i = d2 and 03BCi = vi for all i. Since C’o ~ Pl, any
multiple point of Co is a fundamental point of ~1 and hence one of the
qi. For if not, (C’o,C’o) ~ d2 - ~03BC2i - 4 ~ - 4 in contradiction to (a3).
Hence 1 03BCi(03BCi 2014 1) = (d - 1)(d 2014 2) = 2 vi(vi - 1) and the generic
member 039Bn of A is a curve of genus zero over k(x) (see [8, 2.8 and
2.11]). Since k is algebraically closed, 039Bn is a rational curve, i.e. qtB,
the function field of 039Bn, is purely transcendental over k(x). (There is a
conic in P2k(x) birationally equivalent to 039Bn (see [2, Ch. II, §6]). By
Tsen’s Theorem, A, has a place rational over k(x) (see [11, Ch. II, 3.2
and 3.3]) and hence is rational (see [2, Ch. II, §3]).) Equivalently, x is
a field generator in B, and by [8, 4.8] there exists y E B such that
B = k[x, y].
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1.4. COROLLARY: Let k be perfect, A a k-algebra, t transcendental

over A and assume A[t] = k[x, y, z] ~ k(3). Assume also that z = bt - a

with a, b E A. Then A ~ k(2).

PROOF: If b = 0, the result is proven in [3, Theorem 4.1]. If b ~ 0,
the homomorphism 03C3 : A ~ A[t] ~ A[t]/zA[t] = B is injective. Clearly
A is a regular UFD finitely generated over k and GCD(a, b) = 1.

Identifying A with u(A) we have B ~ A[alb]. By 1.3 (iii), A = k(2).

1.5. LEMMA: Let k’/k be a separable algebraic extension. Let x E
B ~k(2) such that B ~kk’ = k[x, y’] for some y’ E B Ok k’. Then there
exists y E B such that B =k[x, y].

PROOF: Let t be transcendental over k and put R =

B ~kk(t)/(x - t)B ~k k(t). Then R ~k(t)k’(t) ~k’(t)(1), and since

k’ (t)1 k(t) is separable, R~ k(t)(1), as is well known (see [7, 1.1]).
Hence x is a field generator (see [8, 1.3]) and we can apply [8, 4.8].

1.6. LEMMA: Let k’/k be a separable algebraic extension. Let b E
B ~ k(2) such that there exist x’, y’ E B Ok k’ with B Ok k’ = k’ [x’, y’]
and b E k’[x’]. Then there exist x, y E B such that B = k[x, y ] and
b E k[x].

PROOF: We can find a, (03B2 ~ k’, a ~ 0, such that 03B1x’ + 03B2 ~ B. The

proof is the same as the proof of Corollary 1 of [9]. Put x = ax’ + 03B2.
Then k’[x,y’] = k’[x’,y’ ] and b ~k’[x] ~ B = k[x]. The existence of

y such that B = k [x, y] follows from 1.5.

2

In this section we extend the result of [9] on "linear planes" to
fields of arbitrary characteristic. It is possible to do this, once 1.3 is

established, by referring to details in the proof of [9]. It may be

worthwhile, nevertheless, to write down an argument more directly
adapted to our line of reasoning. Also, 2.2 below (which, more or less,
can be found hidden in [9]), giving a construction for somewhat
unfamiliar (since in general not "tame") automorphisms of the

polynomial ring R(2), where R is any commutative ring, deserves to be
mentioned explicitly.
We record the following well known facts (see also the remark

after Lemma 5 in [9]):
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2.1. Let S be a commutative ring and a E S[T] ~ S(1), a = ~ aiT’ i

with ai E S. Then

(i) a is nilpotent ~ ai is nilpotent for all i,
(ii) a is a unit~03B1o is a unit and ai is nilpotent for i ~ 1,
(iii) S [a ] = S[T]~03B11 1 is a unit and ai is nilpotent for i ~ 2.

2.2. PROPOSITION: Let R be a commutative ring, b E R, 03B1 =

Y- aiv i ~ R [v ] ~ R(1) with ai E R, and H = bw + a E R [v, w ] c-- R(2).
Assume that al is a unit mod bR and that ai is nilpotent mod bR for
i ~ 2. Then there exists cp(T) E R[T] such that cp(a) ~ v mod bR[v].
For any such cp,

with G E R [v, w]. Moreover,

PROOF: The existence of cp follows from 2.1(iii) applied to S =
R/ bR. Let ~(T) = ~i~0  03B2i Ti i with l3i Cz R. Then 03B1103B21 2014 1 and the 03B2i for
i ~ 2 are nilpotent mod b. Write

with 6 E R [v]. We have

where ~(i)(T) = ¿j2d (ji)Tj-i. Hence ~(H) = v + b03B2 + bwP with

So ~(H) is of the desired form with

Moreover, ~(1)(03B1) is a unit mod b and ~(i)(03B1) is nilpotent mod b for
i ~ 2. Hence P is a unit mod b in R[v,bw ] (apply 2.1(ii) to

S = R [v]/bR[v]) and there exist Q, QI E R[v, bw] such that PQ =
1 + bQ1. Then w = (G - 03B2)Q - wbQ1. Clearly v = ~(H) - bG ~
R[G,H] and hence bw = H - 03B1 ~R [G,H]. It follows that (3, Q,
Q, E R [G, H]. Hence w E R [G, H].

2.3. THEOREM: Let k be a field, a, b E A = k(2) with b ~ 0, and
H = bw - a E A[w] = k(3). Suppose A[w]/HA[w] = k(2). Then there

exist u, v E A such that A = k[u, v], b E k[u] and a - v is nilpotent
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mod bA. Moreover, there exists G E A[w] = k[u, v, w] such that

k[u, v, w] = k[u, G, H].

PROOF: Let B = A[alb]. Then B~ A[w]/HA[w] ~ k(2). Clearly
GCD(a,b) = 1. Also, A contains a field generator, and by 1.3(i), we
can find x, y E B such that B = k [x, y], b E k[x] and A = k[x, by]. Put
u = x and v’ = b y. Then B = A[v’/b], and by 1.1(ii), a = a0b + cv’
where ao, c E A and c is a unit mod b. By 2.1(ii), c = ~ civ’i i with

ci ~ k[u], co a unit mod b and ci nilpotent mod b for i ~ 1. Finally,
co Y- ylu i with yl ~ k, i yo ~ 0 and co - yo nilpotent mod b. Put v =

yov’. Then a - v is nilpotent mod b. The existence of G follows from
2.2 applied to R = k[u].

3

The conditions under which we proved 1.3 may not be the best

possible. Unique factorization for A, however, is essential. For an

easy example, consider

Also, it does not help to assume that A is regular, as the next example
shows (which the author learned from W. Heinzer).

where u = x and v = xy.
Here Spec B - Spec A is an open immersion, and this is typical in a
way. For we have

3.3. THEOREM: Let k be perfect, A a finitely generated regular
k-domain and a, b E A with b 4 0. Assume B = A[alb] ~ k(2). Then
there exist x, y E B and b’ E k[x] ] such that B = k[x, y],
A C k[x, b’y] = B’ and Spec B’ - Spec A is an open immersion.

PROOF: Not all irreducible factors of b in B now necessarily
contract to maximal ideals in A, but the claim (*) we made in the

proof of 1.3 holds for those irreducible factors b 1, ..., br that do. If
there are none, we are done by Zariski’s Main Theorem. Otherwise
we can, exactly as under condition (iii) of 1.3, find x, y E B with
B = k[x, y] and bi E k[x] for all i. We claim A C k[x, biy], and to finish
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the proof of the theorem we choose b’ E k[x] of maximal degree such
that A C k[x, b’y]. It will be enough to establish the claim in case k is
algebraically closed. For then, if bi1, . . ., bis are the (distinct) ir-

reducible factors of bi in k’[x,y] = B’, where k’ is an algebraic
closure of k, we have bi1 1 = bi ... bis, each bij contracts to a maximal
ideal in A’ = A ~kk’ and A’ ~ k’[x,bijy] for all j. Hence

A’ ~ k’[x,biy] and A C k’[x, biy i n k[x, y] == k [x, biy].
Let then k be algebraically closed. We may set x = bi. Let

be as in case 3 of the proof of 1.3, with the embedding Spec B C X =

p2 so chosen that Co, the curve whose ideal in B is xB, has degree
d = 1. Let (03C3: Z1 ~ X be the locally quadratic transformation with
centre p 1 = Co f1 L (L = X - Spec B), E1 = 03C31-1(p1) and 03C32 : Z2 ~ Zl the
locally quadratic transformation with centre P2 = Côl’ n Et, where Côl’
is the proper transform of Co on Zi. The proper transform on Z2 of a

curve C on X or Zl will be denoted by C(2), and the proper transform
on Z of a curve C on X, Zi or Z2 by C’. Put (T == (Tl 0 0-2. Since

(C’o, C’o) = - 1 (see (a3) in the proof of case 3) and since there are no
fundamental points of ~1 on Spec B, pi and P2 are precisely the
fundamental points of y on Co. It follows that there exists a mor-

phism oi : Z ~ Z2 such that cp  = 0" 0 03C8. We have, putting E2 = 03C32-1(p2),

with Co(2) and E2, E2 and Ei2’, E1(2) and L (2) meeting normally in one
point and all other intersections empty.
There are no fundamental points of oi on Co(2) and hence p == cp 0 o-

is a morphism in a neighbourhood of Co(2). In particular, since Co
contracts to a point in Spec A,

We claim that there are no fundamental points of «/1 on E2 - E1(2). In
f act, F = Y - Spec A is connected (see [4, Ch. II, 6.2]) and hence

(b3) ’P2l(F) is connected.

Since ~ is a morphism on Spec B, ’P2l(F) C ~1-1(L) =
«/1-l(E2 U E1(2) U L (2»). Now L’ C ~2-1(F) by (a2), but E’2 ~ ~2-1(F) by (b2).
It follows from (bi) and (b3) that if q E E2 - E1(2) is a fundamental point
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of oi, then «fJ-1(q) n cp-1(F) == 0. Hence ~2(03C8-1(q)) C Spec A and there-
fore is a point, and this contradicts (ai).
By what we have shown, p is a morphism on Z2 - (E1(2) U L (2»). Let

03C4 :Z2  X1 be the contraction of C0(2). (Note (C0(2) = - 1 and

C0(2) ~ Pk1. Xi is isomorphic to the ruled surface F2.) Let p == p’ 0 r.
Then p’ is a morphism on U = X1 - 03C4(E1(2) ~ L(2) . Also r o

03C3-1(Spec B) C U. It is easily verified that U is affine and that 0393(U) =
k [x, xy ](0393(U) = ring of functions defined on U). Hence A C k [x, xy].

3.4. REMARK: The proof given above actually shows:
Let k be perfect, A a finitely generated regular k-domain, A C B ~

k(2) with qtA = qtB. Let x E B such that xB fl A is maximal and
B/xB ~ k(1). Let X, Y, Z be as above. If the proper transform on Z of
the curve on X defined by x is exceptional of the first kind (briefly, "x
shrinks first"; one can see that this is independent of the choice of X,
Y, and Z as long as Z satisfies (al)) then there exists y E B such that
B = k [x, y ] and A C k [x, xy ]. The example

shows that it is not enough to assume that xB fl A is maximal. (Here y
has to shrink before x can shrink.)

3.5. REMARK: Suppose A[t] = k[x, y, z] as in 1.4. One may ask

what information our methods give if, say, t = bz - a with a, b E

k[x, y], b 0 0. Not much, unfortunately. We have k[x, y, a/b] = A, but
this does not guarantee A = k(2) under the best of conditions for A, as
we will see. If f is an irreducible factor of b in A, then A/ fA = k(1)
(assume k is algebraically closed), so k[x, y, z]/fk[x, y, z] = k(2). If f is
linear in x, y or z, we can use 2.3 and refer to [3,4.1], but there is no
reason why it should.
Now put a = x and let b ~ k[x,y] = B be irreducible such that

(x, b)B = (x, y)B = M and B/bB ~ k(1) (for instance b = XY2 + y + x2).
Let A = B[a/b]. It is easily checked that A is regular with constant
units. Also, bA fl B ~ (x,b)B = M, so bA fl B = M and AlbA ~ k (1).
Hence bA is prime. Since Ab = Bb is a UFD, A is a UFD (see [5]). On
the other hand, A~ k(2), for otherwise B/bB = k(1) by 1.3.

3.6. REMARK: 1.5 remains true for purely inseparable extensions
k’ 1 k if B/xB ~ k(1) is included in the assumptions. (The proof is more
complicated.) Otherwise the conclusion is false in general. In fact, let
char k = p &#x3E; 0 and x = vp + u + 03B1up ~B =k[u,v] with aE!k-kP.

Then B/xB ~ k(1) (see [7]) and k [x, y] 4 B for all y E B, but k’ [u, v ] =
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k’[x,v + 03B2u ], where 03B2p = 03B1 and k’= k(03B2). This also shows, with
b = x, that 1.6 may fail if k’ /k is not separable. More interesting in the
present context is the fact that it does not help to assume BIBB K(1),
where K is a field. For let b = xp - a. If b is a polynomial in some
w E k[u, v], then clearly w is a power of yx + 8 with y, 6 E k, and

again B/wB ~ k(’). However, letting - denote residues mod b, we have
x = (v + xu)p + u and hence BlbB = k[x, v + xu] = k’[v + xu] ~ k’(1).

3.7. REMARK: If char k = p &#x3E; 0, there exists a ~ A = k[u,v] = k(2)
such that A/aA ~ k(1), but A ~ k[a,y] for all y E A, e.g. a =

up2 + v + vrp, with r &#x3E; 1, GCD(r,p) = 1 (see the introduction of [1]).
One deduces easily that the assumption b 4 0 in 2.3 cannot be drop-
ped.
We conclude by raising two questions suggested by the proof of

1.3.

3.8. QUESTION: If A is a finitely generated k-domain such that
qtA ~ qtk(2), when does A contain a field generator? One should
assume that the units of A are constant and may want to impose
additional conditions, such as, in some combination,

(i) A c k[x, y] == k(2) with qtA = k(x, y),
(i’) A[alb] = k[x, y] for some a, b E A,
(ii) A is regular,

(iii) A is a UFD.

3.9. QUESTION: Let f ~ B ~k(2) be irreducible. When does there
exist a regular k-domain (regular UFD) A C B with qtA = qtB such
that fB contracts to a maximal ideal in A? (Clearly, if k is alge-
braically closed, Spec B/ fB is a nonsingular rational curve, but what
else?) One could require in addition that fB is the only height 1 prime
in B contracting to a maximal ideal, or, somewhat weaker, that f has
the property of x in 3.4 of "shrinking first".
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