COMPOSITIO MATHEMATICA

C. H. HOUGHTON Restricted subgroups of wreath products of groups

Compositio Mathematica, tome 33, nº 2 (1976), p. 209-225

<http://www.numdam.org/item?id=CM_1976__33_2_209_0>

© Foundation Compositio Mathematica, 1976, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 33, Fasc. 2, 1976, pag. 209–225 Noordhoff International Publishing Printed in the Netherlands

RESTRICTED SUBGROUPS OF WREATH PRODUCTS OF GROUPS

C. H. Houghton

1. Introduction

Hartley [5] investigated the conjugacy classes of baseless subgroups of wreath products of groups, that is, subgroups which intersect the base group trivially. In [8], it was shown that his results are related to the theory of ends. Here we consider the conjugacy classes of those subgroups of a wreath product whose intersection with the base group consists of functions with support of size less than some fixed infinite cardinal.

The wreath product W = A Wr B of groups A and B may be taken as the split extension by B of the left B-group $F = A^B$ of functions from B to A, with x(fg) = (xf)(xg) and $x({}^bf) = (xb)f$, for $f, g \in F, x,$ $b \in B$. Thus W consists of all pairs fb, with $f \in F$, $b \in B$, and $(fb)(gc) = (f {}^bg)bc$, for $f, g \in F$ and $b, c \in B$; we shall assume throughout that A and B are non-trivial. Let $\sigma(f)$ denote the support of $f \in F$. For an infinite cardinal α , we define F_{α} to consist of those $f \in F$ such that $|\sigma(f)| < \alpha$ and we put $W_{\alpha} = BF_{\alpha} \leq W$. When $\alpha = \aleph_0$, F_{α} consists of the functions with finite support and W_{α} is the restricted wreath product A wr B of A and B.

A subgroup L of W will be called α -restricted if $L \cap F \leq F_{\alpha}$; in the case $\alpha = \aleph_0$, we simply say that L is restricted. Clearly all subgroups of W_{α} are α -restricted and the question we consider is when an α -restricted subgroup L of W is conjugate in W to a subgroup of W_{α} .

We define the *B*-image of a subgroup *L* of *W* to be the image of *L* under the natural map from *W* to *B*. Our first result shows that if the *B*-image *C* of an α -restricted subgroup *L* is sufficiently small, then *L* is conjugate to a subgroup of W_{α} . Let β be the least cardinal such that α is the sum of β cardinals each $< \alpha$.

210

THEOREM (A): If $\alpha > \aleph_0$ and $|C| \le \beta$ or if $\alpha = \aleph_0$ and C is countable and locally finite, then all α -restricted subgroups of W = A Wr B with B-image C are conjugate in W to subgroups of W_{α} .

The remaining results are concerned with the case $\alpha = \aleph_0$ and are related to work of Farrell [3, 4] and Bieri [1]. We show that if C has a normal finitely presented infinite subgroup N of infinite index, then, in most cases, the problem reduces to finding the number of ends of N and C/N. We summarise these results, using e(G) to denote the number of ends of the group G.

THEOREM (B): Every restricted subgroup of W = A Wr B with B-image C is conjugate to a subgroup of A wr B if C has a finitely generated free subgroup of finite index or C has a finitely presented normal subgroup N of infinite index such that either e(N) = 1, or e(N) = 2 and e(C/N) = 1, or $e(N) = \infty$, e(C/N) = 1 and C is finitely generated. There exist restricted subgroups with B-image C which are not conjugate to subgroups of A wr B if C has a finitely presented normal subgroup N with e(N) > 1 and e(C/N) > 1. For a polycyclic by finite group C, every restricted subgroup with B-image C is conjugate to a subgroup of A wr B if and only if C has Hirsch number 2.

If $A^{(B)}$ denotes the *B*-group of functions from *B* to *A* with finite support, then *A* wr *B* is the split extension of $A^{(B)}$ by *B*. The previous results imply the following theorem.

THEOREM (C): Let A be any non-trivial group. All extensions of $A^{(B)}$ by B split if B is countable and locally finite or is finitely generated free by finite. If B is polycyclic by finite, all extensions of $A^{(B)}$ by B split if and only if B has Hirsch number different from 2.

We make use of the theory of groupoids, details of which may be found in Higgins [6]. Our definition of the wreath product has been chosen to correspond to the natural multiplication in the covering groupoid associated with a permutation representation of a given group.

2. The general case

Suppose C acts as a group of permutations of a set X. The associated covering groupoid of C is the set $X \times C$ with vertex set X and multiplication (x, c)(xc, d) = (x, cd) for $x \in X$, $c, d \in C$. A map θ

from $X \times C$ to a group A will be called an almost homomorphism if, for each pair $c, d \in C$, $(x, c)\theta(xc, d)\theta = (x, cd)\theta$, for almost all $x \in X$; that is, the exceptions form a set of cardinal less than α . All homomorphisms are almost homomorphisms; in particular, this applies to the trivial map. The almost homomorphisms θ and ϕ are defined to be equivalent if there is a map γ from X to A such that, for each $c \in C$, $(x, c)\phi = (x\gamma)^{-1}(x, c)\theta(xc\gamma)$, for almost all $x \in X$. We note that if θ is any almost homomorphism and γ is any map from X to A, then the corresponding ϕ will be an almost homomorphism. Also, for any almost homomorphism θ , we have $(x, 1)\theta = 1$, for almost all $x \in X$, and so θ is equivalent to an almost homomorphism ϕ such that $(x, 1)\phi = 1$, for all $x \in X$.

Let W be the wreath product of A and C relative to the action of C on X; that is, W consists of all pairs fc, with f in the group F of functions from X to A and $c \in C$, and the multiplication is given by $(fc)(gd) = (f^cg)cd$, where $x(^cg) = (xc)g$. As before, F_{α} denotes the subgroup of F consisting of those f such that $|\sigma(f)| < \alpha$ and a subgroup L of W is α -restricted if $L \cap F \leq F_{\alpha}$. If $f, g \in F$ are congruent modulo F_{α} then they differ on a set of cardinal $< \alpha$. We say f is almost equal to g and write $f = {}^a g$. We shall consider the case where C acts semiregularly on X, that is, the stabiliser of each point is trivial and so the representation can be thought of as a sum of regular representations.

THEOREM (1): Let C act semiregularly on the set X and let W be the wreath product of A and C relative to X. The conjugacy classes of α -restricted subgroups containing F_{α} and having C as image under the projection from W to C correspond bijectively to the equivalence classes of almost homomorphisms from $X \times C$ to A.

Let $W_1 = A$ Wr B be the standard wreath product of A and B and suppose C is a subgroup of B. Every α -restricted subgroup of W_1 with B-image C is conjugate to a subgroup of the α -restricted wreath product W_{α} of A and B if and only if all almost homomorphisms from $B \times C$ to A are equivalent.

PROOF: Given an almost homomorphism θ from $X \times C$ to A, we define $f_c \in F$, for each $c \in C$, by $xf_c = (x, c)\theta$. For $c, d \in C$, we have $x(f_c {}^c f_d) = (x, c)\theta(xc, d)\theta$ and $xf_{cd} = (x, cd)\theta$ and so $f_c {}^c f_d = {}^a f_{cd}$. Let $R = R(\theta)$ be the subgroup of W generated by all $f_c c$, with $c \in C$, and by F_{α} . Now $f_c {}^c f_d F_{\alpha} = f_{cd} F_{\alpha}$ so $(f_c c)(f_d d)F_{\alpha} = f_{cd} cdF_{\alpha}$ and R = $\{f_c c : c \in C\}F_{\alpha}$. Hence $R \cap F = F_{\alpha}$ and $R = R(\theta)$ is an α -restricted subgroup of W. Suppose ϕ is an almost homomorphism equivalent to θ and so, for each $c \in C$, $(x, c)\phi = (x\gamma)^{-1}(x, c)\theta(xc)\gamma$, for almost all $x \in X$. Putting $xh_c = (x, c)\phi$, we have $h_c = {}^a \gamma^{-1} f_c {}^c \gamma$ and $(h_c c)F_{\alpha} = (\gamma^{-1}(f_c c)\gamma)F_{\alpha}$ so

$$R(\phi) = \{h_c c : c \in C\}F_{\alpha} = \gamma^{-1}\{f_c c : c \in C\}F_{\alpha}\gamma = \gamma^{-1}R(\theta)\gamma$$

Suppose R is an α -restricted subgroup of W containing F_{α} and having image C under the projection map from W to C. If T is a transversal of the cosets of F_{α} in R, then $T = \{f_c c : c \in C\}$ and $f_c {}^c f_d = {}^a f_{cd}$. Defining $(x, c)\theta = xf_c$ gives an almost homomorphism from $X \times C$ to A. We note that θ depends on the choice of transversal as well as on R. Suppose S is a subgroup of W conjugate to R. We shall show that if ϕ is an almost homomorphism associated with S then ϕ is equivalent to θ . For some $fb \in W$, we have $S = fbRb^{-1}f^{-1}$ and

$$bRb^{-1} = bTb^{-1}F_{\alpha} = \{{}^{b}f_{c}(bcb^{-1}): c \in C\}F_{\alpha} = \{{}^{b}f_{c}d: d \in C\}F_{\alpha}$$

where $d = bcb^{-1}$. Putting $e = b^{-1}$,

$${}^{b}f_{c} = {}^{a}{}^{b}f_{edb} = {}^{a}{}^{b}f_{e}{}^{be}f_{d}{}^{bed}f_{b} = {}^{a}{}^{b}f_{e}f_{d}{}^{d}f_{b}.$$

Also $f_b {}^b f_e = {}^a 1$, so ${}^b f_c = {}^a f_b {}^{-1} f_d {}^d f_b$ and $bRb {}^{-1} = f_b {}^{-1} \{f_d d : d \in C\} f_b F_\alpha$. Thus $S = f f_b {}^{-1} R f_b f^{-1}$. Putting $g = f_b f^{-1}$ and choosing a transversal U for F_α in S, we have $U = \{k_c c : c \in C\}$ with $k_c = {}^a g^{-1} f_c {}^c g$. Taking $(x, c)\phi = xk_c$, we have, for each $c \in C$, $(x, c)\phi = (xg)^{-1}(x, c)\theta(xc)g$, for almost all $x \in X$, and hence ϕ is equivalent to θ . Thus the conjugacy classes of restricted subgroups containing F_α correspond to the equivalence classes of almost homomorphisms.

Suppose every almost homomorphism from $B \times C$ to A is equivalent to the trivial one and let R be an α -restricted subgroup of W_1 with B-image C. Then RF_{α} is contained in the wreath product W of A and Cwith X = B and therefore RF_{α} is conjugate to a subgroup of W_{α} and so also is R. Conversely, if θ is an almost homomorphism from $B \times C$ to A, then there is a corresponding α -restricted subgroup R of Wcontaining F_{α} . Now B normalises W_{α} so if R is conjugate to a subgroup of W_{α} , we have $R^{fb} \leq W_{\alpha}$ and hence $R^{f} \leq W_{\alpha}$, for some $f \in F, b \in B$. Since R^{f} is in the conjugacy class of R in W, the first part implies that θ is equivalent to the trivial homomorphism.

We note that if the subgroup R above is baseless, that is, $R \cap F = 1$, then $f_c{}^c f_d = f_{cd}$, for all $c, d \in C$, and then the corresponding θ is a homomorphism. The next result shows that Theorem C is a consequence of Theorems A and B.

THEOREM (2): Let F_{α} be the B-group of functions f from B to A with $|\sigma(f)| < \alpha$ and $x({}^{b}f) = (xb)f$, for all $x, b \in B$. All extensions of F_{α} by B split if and only if all α -restricted subgroups of W = A Wr B which contain F_{α} and have B-image B are conjugate.

PROOF: Let K be an extension of F_{α} by B and let ρ be the natural map from K to B. For each $b \in B$, we may choose $b\tau \in K$ such that $b\tau\rho = b$ and $(b\tau)k(b\tau)^{-1} = {}^{b}k$, for all $k \in K$. We define $\omega : K \to W$ by $k\omega = f_{k}k\rho$, where $f_{k} \in F$ and $bf_{k} = 1((b\tau)k((b \cdot k\rho)\tau)^{-1})$, for $b \in B$; we note that the last expression is the value at 1 of some element of F_{α} . If $m \in K$ then

$$k\omega m\omega = f_k{}^{k\rho}f_m(km)\rho$$

and

$$b(f_k^{k\rho}f_m) = 1((b\tau)k((b \cdot k\rho)\tau)^{-1}1((b \cdot k\rho)\tau)m((b \cdot k\rho \cdot m\rho)\tau)^{-1} = bf_{km}$$

Thus ω is a homomorphism. If $k \in F_{\alpha}$ then $k\omega = f_k$ with $bf_k = 1((b\tau)k(b\tau)^{-1}) = 1({}^{b}k) = bk$, for all $b \in B$, so $k\omega = k$. Then ω is injective and K is isomorphic to a subgroup L of W with B-image B and $L \cap F = F_{\alpha}$. We call such a subgroup a full α -restricted subgroup of W and note that we have shown that any extension of F_{α} by B is isomorphic to one of these.

A full α -restricted subgroup L of W which is conjugate to $W_{\alpha} = BF_{\alpha}$ is a split extension of F_{α} . Suppose conversely that L splits as an extension of F_{α} by B. Then L has a subgroup $M = \{f_b b : b \in B\}$, with $f_b \in F$, and M is baseless, that is, $M \cap F = 1$. From Lemma 3.2(i) of [5], M is conjugate in W to B and so L is conjugate to W_{α} . (This also follows from Lemma 3 below, since the θ corresponding to M is a homomorphism.) Thus all extensions split if and only if all full α -restricted subgroups are conjugate.

We now explain the relation between our work and that of Farrell [3, 4] and Bieri [5]. For abelian A, all extensions of F_{α} by B split if and only if $H^2(B, F_{\alpha}) = 0$. Suppose R is a commutative ring with identity, A is a free R-module and $\alpha = \aleph_0$. Then the B-group F_{α} of functions from B to A with finite support is B-isomorphic to $A \otimes_R RB$. Thus $H^2(B, F_{\alpha})$ is isomorphic to $H^2(B, A \otimes_R RB)$, which is the group studied by Farrell and Bieri. Farrell considers the case where R is a field and obtains results which are not included in the results proved here for general A.

We now consider the classification of the equivalence classes of almost homomorphisms from $X \times C$ to A, under the assumption that C acts semiregularly on X.

LEMMA (3): Suppose θ is an almost homomorphism from $X \times C$ to Aand G is a subgroupoid of $X \times C$. If the restriction of θ to G is a homomorphism, there exists $\gamma : X \to A$ such that $(x, c)\theta = (x\gamma)^{-1}(xc)\gamma$, for $(x, c) \in G$, and θ is equivalent to an almost homomorphism trivial on G.

PROOF: Let U be a subset of X containing one vertex from each connected component of G. Since C acts semiregularly, all vertex groups of G are trivial and there is a unique element joining one vertex to another in the same component of G. If x is a vertex of G then x = ud for a unique $(u, d) \in G$ with $u \in U$. For $c \in C$, with $(x, c) \in G$, we have $(x, c) = (x, d^{-1})(u, dc) = (u, d)^{-1}(u, dc)$, so $(u, dc) \in G$ and $(x, c)\theta = ((u, d)\theta)^{-1}(u, dc)\theta$. Taking $x\gamma = (u, d)\theta$ gives $(x, c)\theta =$ $(x\gamma)^{-1}(xc)\gamma$, for $(x, c) \in G$. Let $x\gamma$ be defined in this way for all vertices of G and let $x\gamma = 1$ for all other $x \in X$. If $(x, c)\phi =$ $(x\gamma)(x, c)\theta((xc)\gamma)^{-1}$, then ϕ is an almost homomorphism equivalent to θ and trivial on G.

If D is a subgroup of C, we shall refer to a connected component of $X \times D$ as a D-sheet of $X \times C$. Thus each D-sheet consists of all (xd, e), with $d, e \in D$ and x a fixed vertex of X. We recall that β was defined as the least cardinal such that α is the sum of β cardinals each $< \alpha$.

LEMMA (4): Suppose $|C| < \beta$ and θ is an almost homomorphism from $X \times C$ to A. Then θ is a homomorphism on almost all C-sheets of $X \times C$, that is, there exists a subset T of X with $|T| < \alpha$, such that the restriction of θ to $xC \times C$ is a homomorphism for all $x \in X \setminus TC$.

PROOF: For $c, d \in C$, let X(c, d) be the set of all $x \in X$ such that $(x, c)\theta(xc, d)\theta \neq (x, cd)\theta$. Then $|X(c, d)| < \alpha$ and if T is the union of all X(c, d), with $c, d \in C$, then $|T| < \alpha$. Clearly the restriction of θ to $(X \setminus TC) \times C$ is a homomorphism.

Theorem 1 shows that the next result implies Theorem A.

THEOREM (5): Suppose $\alpha > \aleph_0$ and $|C| \le \beta$ or $\alpha = \aleph_0$ and C is countable and locally finite. If C acts semiregularly on X, all almost homomorphisms from $X \times C$ to A are equivalent.

PROOF: Considering α as an ordinal which is not equivalent to any of its predecessors, our assumption implies that we can express C as $\bigcup_{i < \beta} C_i$, with $C_i \leq C_j$ for $i \leq j$, $C_{\lambda} = \bigcup_{i < \lambda} C_i$ for λ a limit ordinal, and $|C_i| < \beta$ for all *i*. Let θ be an almost homomorphism from $X \times C$ to A. For $x \in X$, let J(x) be the set of ordinals $j < \beta$ such that the restriction of θ to the C_j -sheet containing x is not a homomorphism. If J(x) is non-empty, it has a first element j(x). For a limit ordinal λ , if θ is a homomorphism on all C_j -sheets containing x with $j < \lambda$, then θ is a homomorphism on the C_{λ} -sheet containing x. Thus j(x) is not a limit ordinal and hence has an immediate predecessor. So for each $x \in X$ there is a maximal ordinal *i* such that θ restricted to the C_i -sheet containing *x* is a homomorphism; if J(x) is empty, $i = \beta$. Suppose *y* is another element of *X* with corresponding maximal ordinal *j*. If the maximal sheets containing *x* and *y* intersect, then $xC_i \cap yC_i \neq \emptyset$ so, assuming $i \leq j$, we have $xC_i = yC_j$ and hence i = j. Thus *X* is partitioned into maximal subsets xC_i such that θ is a homomorphism on the C_i -sheet with vertex set xC_i . If *G* denotes the subgroupoid which is the union of all these sheets, then θ is a homomorphism on *G*. Let X_i be the set of all vertices of *X* not contained in a C_i -sheet of *G*. From Lemma 4, $|X_i| < \alpha |C_i| = \alpha$. From Lemma 3, we can choose γ so that $(x, c)\theta = (x\gamma)^{-1}(xc)\gamma$, for $(x, c) \in G$. Then for $c \in C_i$, $(x, c)\theta =$ $(x\gamma)^{-1}(xc)\gamma$ for $x \in X \setminus X_i$ and hence for almost all $x \in X$. So θ is equivalent to the trivial homomorphism.

3. The case $\alpha = \aleph_0$

From now on we restrict our attention to the case $\alpha = \aleph_0$. Although some of the lemmas hold for a general cardinal, we can only make significant deductions in this case. We begin by describing the results we need from the theory of ends. For further details, see Cohen [2].

A subset S of a group G is almost invariant if $Sg \cap (G \setminus S)$ is finite, for all $g \in G$. The number of ends of G, denoted by e(G), is the supremum of the number of parts in a partition of G into infinite almost invariant subsets. Then $e(G) = 0, 1, 2, \text{ or } \infty$, with e(G) = 0 if and only if G is finite and e(G) = 2 if and only if G is infinite cyclic by finite. Finitely generated groups G with $e(G) = \infty$ have been characterised and any countable locally finite group G has $e(G) = \infty$. If G has an ascendant subgroup which is not locally finite and has no non-abelian free subgroups, then e(G) = 1, unless G is infinite cyclic by finite. Further results may be found in [2] and [9].

Let G act semiregularly on X and let θ be a homomorphism from $X \times G$ to A. We say θ is almost trivial if, for each $g \in G$, $(x, g)\theta = 1$, for almost all $x \in X$. Two such homomorphisms θ and ϕ will be called equivalent if, for some function f from X to A, almost equal to a function constant on all xG, we have $(x, g)\phi = (xf)^{-1}(x, g)\theta(xg)f$, for all $(x, g) \in X \times G$. We note that this definition of equivalence is much weaker than equivalence between almost homomorphisms. From Lemma 3, there is a function h from X to A such that $(x, g)\theta = (xh)^{-1}(xg)h$, for all $(x, g) \in X \times G$. Since θ is almost trivial, $h = {}^{as}h$, for all $g \in G$. Such a function h is said to be almost G-invariant and we note that any such function defines an almost trivial homomorphism

from $X \times G$ to A by putting $(x, g)\theta = (xh)^{-1}(xg)h = x(h^{-1s}h)$. Then each almost trivial homomorphism θ is given by $(x, g)\theta = x(h^{-1s}h)$, for some almost invariant function h, and if $(x, g)\phi = x(k^{-1s}k)$, with k almost invariant, then θ and ϕ are equivalent if and only if $k^{-1s}k = f^{-1}h^{-1s}h^{s}f$, for some f almost equal to a function constant on all xGand for all $g \in G$.

For any function f from X to A, let $\{S_i : i \in I\}$ be the decomposition of X into constancy sets of f, that is, $x, y \in S_i$ if and only if xf = yf. Then f is almost invariant if and only if $\bigcup_{i \in I} (S_ig \cap (X \setminus S_i))$ is finite, for all $g \in G$. In the case where X = G and f is almost invariant, the sets S_i are almost invariant subsets of G. Detailed analysis gives the following results.

LEMMA (6): Let G act semiregularly on X. If e(G) = 0 or 1, every almost invariant function from G to A is almost equal to a constant function and every almost trivial homomorphism from $X \times G$ to A is equivalent to the trivial homomorphism. If e(G) = 2 and $\{S, T\}$ is a partition of G into infinite almost invariant subsets, then any almost invariant function from G to A is almost equal to a function constant on S and T. If $e(G) = \infty$ and G is finitely generated, for any almost invariant function f from G to A, there is a finite partition $\{S_1, \ldots, S_r\}$ of G into infinite almost invariant subsets such that f is almost equal to a function constant on each S_i . If e(G) > 1, the set Z of equivalence classes of almost trivial homomorphisms from $X \times G$ to A contains a subset bijective with the set $A_0^{(X/G)}$, consisting of the functions with finite support from X/G to the set A_0 of conjugacy classes of A; if e(G) = 2, this subset is the whole of Z.

PROOF: If e(G) = 0, G is finite and the results are immediate. For infinite G, the remarks about almost invariant functions follow from Lemmas 4.3 and 4.4 of [7]. Translation of Theorem 3 of [8] from the language of wreath products to that of groupoids, shows that, if e(G) = 1, every almost trivial homomorphism from $X \times G$ to A is equivalent to the trivial homomorphism. Finally, we must consider the set Z when e(G) > 1.

Let S be an infinite almost invariant subset of G such that $T = G \setminus S$ is infinite and let U be a transversal of the orbits of X under G. For any function $k \in A^{(U)}$ with support V, we can define an almost invariant function h = h(k) from X to A by taking (vS)h = vk, for $v \in V$, and $(X \setminus VS)h = 1$. If m is conjugate to k in $A^{(U)}$ and t = h(m), then for some function f from X to A, constant on all xG, we have $t = fhf^{-1}$. For $g \in G$, $t^{-1g}t = fh^{-1}f^{-1g}f^gh^gf^{-1} = fh^{-1g}h^gf^{-1}$, and thus the homomorphisms corresponding to h and t are equivalent. Conversely, if the homomorphisms corresponding to h and t are equivalent, there are functions e, f from X to A, with f constant on all xG and $e = {}^{a}f$, such that $t^{-1}{}^{s}t = eh^{-1}{}^{s}h{}^{s}e^{-1}$, for $g \in G$. Then

$$tfh^{-1}f^{-1} = {}^{a}teh^{-1}f^{-1} = {}^{g}(teh^{-1})f^{-1} = {}^{a}{}^{g}(tfh^{-1}f^{-1}),$$

for all $g \in G$, and so $tfh^{-1}f^{-1}$ is constant on all xG. For $u \in U$, $(uT)tfh^{-1}f^{-1} = 1$, so $tfh^{-1}f^{-1} = 1$ and $t = fhf^{-1}$. Then *m* is conjugate to *k* and so we have shown that *Z* has a subset bijective with $A_0^{(U)}$.

In the case where e(G) = 2, a standard argument (see Theorem 3 of [8] or Lemma 2.3 of [2]) shows that any almost invariant function f from X to A is constant on almost all uG, $u \in U$. Let V be the finite set consisting of the remaining $u \in U$. Since f is almost invariant on each vG, $v \in V$, it is almost equal to a function d with $(vS)d = a_v, (vT)d = b_v$, for $v \in V$, and $(uG)d = a_u$, for $u \in U \setminus V$. Then the almost trivial homomorphism associated with f is equivalent to the almost homomorphism ϕ associated with d and defined by $(x, g)\phi = (xd)^{-1}(xg)d$. Now $(x, g)\phi = 1$, for $x \in X \setminus VG$, and if $x \in vG$ with $v \in V$, $(x, g)\phi = 1$ for $x \in v(S \cap Sg^{-1}) \cup v(T \cap Tg^{-1})$, $(x, g)\phi = a_v^{-1}b_v$ for $x \in v(S \cap Tg^{-1})$, and $(x, g)\phi = b_v^{-1}a_v$ for $x \in v(T \cap Sg^{-1})$. Let $k \in A^{(U)}$ be given by $vk = a_v^{-1}b_v$ and let h = h(k). Then $(x, g)\phi = (xh)^{-1}(xg)h$ and hence every almost trivial homomorphism is equivalent to one associated with $A_0^{(U)}$.

We now return to the analysis of almost homomorphisms.

LEMMA (7): Suppose N is a finitely presented subgroup of C and let θ be an almost homomorphism from $X \times C$ to A. Then θ is equivalent to an almost homomorphism ψ trivial on almost all N-sheets of $X \times C$. If N is free, ψ may be taken as trivial on all N-sheets.

PROOF: Let $\langle P : Q \rangle$ be a presentation of N with P and Q finite; if N is free, let Q be empty. A relator r in Q is expressed as a word $y_1 \cdots y_s$ with $y_i \in P \cup P^{-1}$. For almost all $x \in X$,

$$1 = (x, 1)\theta = (x, y_1 \cdots y_s)\theta = (x, y_1)\theta(xy_1, y_2)\theta \cdots (xy_1 \cdots y_{s-1}, y_s)\theta,$$

and also, for $p \in P$, $1 = (x, 1)\theta = (x, p)\theta((x, p)^{-1})\theta$. Now P and Q are finite, so there is a finite subset V of X such that, if $x \in Y = X \setminus VN$, an equation of the previous kind holds for all relators in Q and $(xp, p^{-1})\theta = ((x, p)^{-1})\theta = ((x, p)\theta)^{-1}$, for $p \in P$. If N is free then, replacing θ by an equivalent almost homomorphism, we may assume V is empty.

With $y \in Y$ and a word $w = p_1 \cdots p_t$, where $p_i \in P \cup P^{-1}$, we can associate the product $v(y, w) = (y, p_1)\theta(yp_1, p_2)\theta \cdots (yp_1 \cdots p_{t-1}, p_t)\theta$. Now $(x, p)\theta(xp, p^{-1})\theta = 1 = (xp, p^{-1})\theta(x, p)\theta$, for $x \in Y$, so deletion from w or insertion in w of products pp^{-1} or $p^{-1}p$, with $p \in P$, gives a word w' with v(y, w') = v(y, w). Similarly, if w' is obtained from w by deleting a relator, then v(y, w') = v(y, w). Suppose $n \in N$ has two expressions in terms of $P \cup P^{-1}$, $n = p_1 \cdots p_t = z_1 \cdots z_s$, and let w be the word $p_1 \cdots p_i z_s^{-1} \cdots z_1^{-1}$. After deletion and insertion of products pp^{-1} and $p^{-1}p$, we obtain a word u which is a product of conjugates of relators and for which v(y, u) = v(y, w). Deleting the relators from u gives a word m with v(y, m) = v(y, u) and the invariance of v under deletion of products pp^{-1} and $p^{-1}p$ implies that v(y, m) = 1. Hence v(y, w) = 1 and $v(y, p_1 \cdots p_t) = v(y, z_1 \cdots z_s)$. For $y \in Y$ and $n \in N$, with $n = p_1 \cdots p_t$, we put $(y, n)\phi = (y, p_1)\theta \cdots (yp_1 \cdots p_{t-1}, p_t)\theta$. This gives a well defined map from $Y \times N$ to A, which is clearly a homomorphism. We extend ϕ to a map from $X \times C$ by taking $(x, c)\phi = (x, c)\theta$ for (x, c) outside $Y \times N$. Now $(x, p)\phi = (x, p)\theta$ for all $p \in P \cup P^{-1}$ and all $x \in X$. Suppose $m, n \in N$ and $(x, m)\phi = (x, m)\theta$, $(x, n)\phi = (x, n)\theta$, for almost all $x \in X$. Then, for almost all $y \in Y$, $(y, mn)\phi = (y, m)\phi(ym, n)\phi = (y, m)\theta(ym, n)\theta = (y, mn)\theta$ and so $(x, mn)\phi = (x, mn)\theta$, for almost all $x \in X$. Thus, for all $n \in N$, we have $(x, n)\phi = (x, n)\theta$, for almost all $x \in X$, and so ϕ is an almost homomorphism equivalent to θ . From Lemma 3, ϕ is equivalent to an almost homomorphism ψ , trivial on $Y \times N$.

LEMMA (8): Suppose C has a finitely presented normal subgroup N of infinite index. Every almost homomorphism from $X \times C$ to A is equivalent to an almost homomorphism ψ trivial on all N-sheets of $X \times C$. For such a ψ , if $xf_c = (x, c)\psi$, then f_c is almost N-invariant, for all $c \in C$.

PROOF: From Lemma 7, any almost homomorphism is equivalent to an almost homomorphism θ trivial on almost all *N*-sheets. Let *T* be a finite subset of *X* with one vertex in each exceptional *N*-sheet. Since C/N is infinite, for any *N*-sheet with vertex set yN, $y \in T$, there exists $d \in C$ such that θ is trivial on the sheet with vertex set yNd = ydN. If $n \in N$, then $d^{-1}nd \in N$ and, for almost all $m \in N$,

$$(ym, n)\theta = (ym, d)\theta(ymd, d^{-1}nd)\theta((ymn, d)\theta)^{-1}$$
$$= (ym, d)\theta((ymn, d)\theta)^{-1}.$$

We now define $\gamma: X \to A$ by putting $(ym)\gamma = (ym, d)\theta$, for $y \in T$, $m \in N$, and d = d(y) chosen as above; we take $x\gamma$ trivial on all other

 $x \in X$. If $(x, c)\phi = (x\gamma)^{-1}(x, c)\theta(xc)\gamma$, for $(x, c)\in X \times C$, then ϕ is equivalent to θ . For fixed $n \in N$, $(x, n)\phi$ is non-trivial only for x = ym, where $y \in T$, $m \in N$, and for each y the exceptions m form a finite set. Thus $(x, n)\phi$ is trivial for almost all $x \in X$ and so ϕ is equivalent to an almost homomorphism ψ trivial on all N-sheets.

Let $c \in C$ be fixed. For $x \in X$ and $n \in N$, we have $(xn, c) = (xn, n^{-1})(x, c)(xc, c^{-1}nc)$ so, for fixed $n, (xn, c)\psi = (x, c)\psi$, for almost all $x \in X$. Thus ${}^{n}f_{c} = {}^{a}f_{c}$, for all $n \in N$, and f_{c} is almost N-invariant.

LEMMA (9): Suppose C has a finitely generated normal subgroup N. Let U be a transversal of the orbits of X under C and T a transversal of the cosets of N in C. If $f: X \to A$ is almost N-invariant, there exists a partition $\{N_1, \ldots, N_r\}$ of N into infinite almost invariant subsets such that f is almost equal to a function constant on almost all xN and on all uN_it , for $u \in U$, $t \in T$.

PROOF: Let P be a finite generating set for N and let V be the intersection of UT with $(\bigcup_{p \in P} \sigma(f^{-1\,p}f))N$. Then V is finite and, for $x \in X \setminus VN$, (xp)f = xf, for $p \in P$, and so f is constant on xN. For $v = ut \in V$ with $u \in U$, $t \in T$, let $h_v = h : N \to A$ be defined by mh = (umt)f, for $m \in N$. If $m, n \in N$, then

$$m({}^{n}h) = (mn)h = (umnt)f = (umt(t^{-1}nt))f = (umt)^{y}f,$$

where $y = t^{-1}nt$. But ${}^{y}f = {}^{a}f$ so, for almost all $m \in N$, $m({}^{n}h) = (umt)f = mh$, and so h is almost invariant. If S_i , $i \in I$, are the constancy sets of h and h is not constant on N, then, for each $i \in I$, $S_iN \neq S_i$ and so $S_ip \cap (N \setminus S_i)$ is non-empty, for some $p \in P$. But $\bigcup_{i \in I} S_ip \cap (N \setminus S_i)$ is finite for all $p \in P$ and so I is finite. Consider all possible subsets of N of the form $\bigcap_{v \in V} R_v$, where R_v is a constancy set of h_v . These form a finite partition of N into almost invariant subsets on which all h_v are constant. Incorporating all the finite parts in one of the infinite parts, we have a partition $\{N_1, \ldots, N_r\}$ of N into infinite almost invariant subsets such that, for $v \in V$, $h_v = {}^{a}k_v$, where k_v is a function constant on all N_i . Then f is almost equal to a function constant on almost all xN and on all uN_it , with $u \in U$, $t \in T$.

LEMMA (10): Suppose C has a finitely generated normal subgroup N with a partition $\{N_1, \ldots, N_r\}$ into infinite almost invariant subsets. Let U be a transversal of the orbits of X under C and T a transversal of the cosets of N in C and put Y = X/N, D = C/N. Let Z be the set of equivalence classes of almost homomorphisms θ from $X \times C$ to A which are trivial on all N-sheets and such that, if $xf_c = (x, c)\theta$, then f_c is

constant on almost all xN and constant on all uN_it , with $u \in U$, $t \in T$. Then Z is trivial if r = 1. If $r \ge 2$, then Z has a subset bijective with the set of equivalence classes of almost trivial homomorphisms from $Y \times D$ to A and this is the whole of Z if r = 2.

PROOF: Let θ be an almost homomorphism satisfying the given conditions. If $n \in N$, $c \in C$, then $f_{nc} = {}^{a}f_{n}{}^{n}f_{c} = {}^{a}f_{c}$. But f_{c} and f_{nc} are constant on all the infinite sets $uN_{i}t$ and so $f_{c} = f_{nc}$.

Let ρ denote the natural maps from X to Y and D to C. For fixed *i*, there is a well defined map $\phi = \phi_i$ from $Y \times D$ to A given by $((ut)\rho, c\rho)\phi = (uN_it)f_c$, for $u \in U$, $t \in T$, $c \in C$. If $c, e \in C$, then

$$(((ut)\rho, c\rho)((utc)\rho, e\rho))\phi = ((ut)\rho, (ce)\rho)\phi = (uN_it)f_{ce}$$

Since $f_{ce} = {}^{a}f_{c}{}^{c}f_{e}$, we have $(unt)f_{ce} = (unt)f_{c}(untc)f_{e}$, for almost all $n \in N_{i}$. For fixed t, c, we have tc = ms, for some $m \in N, s \in T$. Since $N_{i}m \cap (N \setminus N_{i})$ is finite, $uN_{i}ms \cap u(N \setminus N_{i})s = uN_{i}tc \cap u(N \setminus N_{i})s$ is finite and hence $(untc)f_{e} = (uN_{i}s)f_{e}$, for almost all $n \in N_{i}$. Thus

$$(uN_it)f_{ce} = (uN_it)f_c(uN_is)f_e = ((ut)\rho, c\rho)\phi((us)\rho, e\rho)\phi$$
$$= ((ut)\rho, c\rho)\phi((utc)\rho, e\rho)\phi.$$

So $\phi = \phi_i$ is a homomorphism from $Y \times D$ to A.

We take i = 1 and note from Lemma 3 that there is a map $\gamma: Y \to A$ such that $(y, d)\phi_1 = (y\gamma)^{-1}(yd)\gamma$ for $y \in Y$, $d \in D$. Let $g: X \to A$ be given by $xg = x\rho\gamma$, for $x \in X$, and put $(x, c)\psi = (xg)(x, c)\theta((xc)g)^{-1}$, for $x \in X$, $c \in C$. Then ψ is equivalent to θ and, since g is constant on each xN, ψ satisfies the conditions given for θ . Let $(x, c)\psi = xh_c$ and, for each i, let λ_i denote the homomorphism from $Y \times D$ to A associated with ψ and N_i . For $u \in U$, $t \in T$, $c \in C$, we have

$$((ut)\rho, c\rho)\lambda_1 = (uN_1t)h_c = (uN_1t)g(uN_1t, c)\theta(uN_1tc)g$$
$$= (ut)\rho\gamma((ut)\rho, c\rho)\phi_1((utc)\rho\gamma)^{-1} = 1.$$

Thus λ_1 is trivial and h_c is trivial on UN_1T . Since h_c is constant on almost all xN, it is trivial on almost all xN and so each λ_i is almost trivial. Thus each almost homomorphism θ is equivalent to an almost homomorphism ψ given by $(unt, c)\psi = ((ut)\rho, c\rho)\lambda_i$, for $u \in U$, $t \in T$, $c \in C$ and $n \in N_i$, where $\lambda_1 = 1, \lambda_2, \ldots, \lambda_r$ are almost trivial homomorphisms from $Y \times D$ to A.

Conversely, suppose $\lambda_1 = 1, \lambda_2, ..., \lambda_r$ are almost trivial homomorphisms from $Y \times D$ to A and $\psi : X \times C \to A$ is given by $(unt, c)\psi =$ $((ut)\rho, c\rho)\lambda_i$, for $u \in U$, $t \in T$, $c \in C$ and $n \in N_i$. If $e \in C$ and $n \in N_i$,

$$(unt, ce)\psi = ((ut)\rho, (ce)\rho)\lambda_i = ((ut)\rho, c\rho)\lambda_i((utc)\rho, e\rho)\lambda_i.$$

Now $(unt, c)\psi = ((ut)\rho, c\rho)\lambda_i$ and, if tc = ms with $m \in N$, $s \in T$, then $untc = unms \in uN_i s$, for almost all $n \in N_i$, and so $(untc, e)\psi =$ $((utc)\rho, e\rho)\lambda_i$, for almost all $n \in N_i$. So, for fixed u, t, c, e, we have $(unt, ce)\psi = (unt, c)\psi(untc, e)\psi$, for almost all $n \in N$. Since the λ_i are almost trivial, $(x, c)\psi$ is trivial on almost all xN and hence $(x, ce)\psi =$ $(x, c)\psi(xc, e)\psi$, for almost all $x \in X$. Thus ψ is an almost homomorphism.

Next suppose $\phi: X \times C \to A$ corresponds to the almost trivial homomorphisms $\mu_1 = 1, \mu_2, \ldots, \mu_r$ from $Y \times D$ to A. If ϕ is equivalent to ψ there is a map $\gamma: X \to A$ such that, for $c \in C$, $(x, c)\phi = (x\gamma)^{-1}(x, c)\psi(xc)\gamma$, for almost all $x \in X$. Since ϕ and ψ are trivial on all N-sheets, $\gamma = {}^{an}\gamma$, for $n \in N$, and so γ is almost N-invariant. From Lemma 9, $\gamma = {}^{a}\delta$, for some δ constant on almost all xN and on all uSt, where S runs through the sets in a finite partition of N into infinite almost invariant subsets. For each *i*, there is some such S with $M_i = N_i \cap S$ infinite. Then M_i is almost invariant and both δ and all f_c are constant on all uM_it . Since $\delta = {}^{a}\gamma, (x, c)\phi = (x\delta)^{-1}(x, c)\psi(xc)\delta$, for almost all $x \in X$. Now $(uN_1t, c)\phi = 1 = (uN_1t, c)\psi$ so, for fixed *t*, $s \in T$ with tc = ms, we have $(unt)\delta = (untc)\delta = (unms)\delta$, for almost all $n \in M_1$. Since $M_1 \cap M_1m$ is infinite, $(uM_1t)\delta = (uM_1s)\delta$, and so δ is constant on each uM_1T . For $u \in U$, $t \in T$, $c \in C$, with $tc \in Ns$, $s \in T$, we have

$$((ut)\rho, c\rho)\mu_i = (uN_it, c)\phi = (uM_it, c)\phi$$
$$= ((uM_it)\delta)^{-1}(uM_it, c)\psi(uM_is)\delta$$
$$= ((uM_it)\delta)^{-1}((ut)\rho, c\rho)\lambda_i(uM_is)\delta.$$

Putting $(ut)\rho\epsilon_i = (uM_it)\delta$, we have

$$((ut)\rho, c\rho)\mu_i = ((ut)\rho\epsilon_i)^{-1}((ut)\rho, c\rho)\lambda_i(utc)\rho\epsilon_i$$

Now δ is constant on each uM_1T and on almost all xN. Thus $(uM_it)\delta = (uM_1t)\delta$, for almost all $ut \in UT$ and ϵ_i is almost equal to the function $\epsilon = \epsilon_1$, which is constant on each $u\rho D$. If $\beta_i = \epsilon_i \epsilon^{-1}$, we have a function ϵ , constant on each yD, and functions $\beta_i = a$ such that $(y, d)\mu_i = (y\beta_i\epsilon)^{-1}(y, d)\lambda_i(yd)\beta_i\epsilon$. In this situation, we say that (μ_1, \ldots, μ_r) is equivalent to $(\lambda_1, \ldots, \lambda_r)$. This implies, but is not implied by, the equivalence of μ_i and λ_i for each *i*.

Finally, we show that if (μ_1, \ldots, μ_r) is equivalent to $(\lambda_1, \ldots, \lambda_r)$, then ϕ is equivalent to ψ . We have functions β_i , ϵ from Y to A, with $\beta_i = a$ 1

and ϵ constant on each yD, such that

 $((ut)\rho, c\rho)\mu_i = ((ut)\rho\beta_i\epsilon)^{-1}((ut)\rho, c\rho)\lambda_i(utc)\rho\beta_i\epsilon.$

Define $\delta, \nu : X \to A$ by $(uN_i t)\delta = (ut)\rho\beta_i$, $(uC)\nu = u\rho\epsilon$. Let $c \in C$, $u \in U$, $t \in T$, be fixed. If tc = ms, with $m \in M$, $s \in T$, then

$$(uN_it, c)\phi = ((ut)\rho, c\rho)\mu_i = ((uN_it)\delta\nu)^{-1}(uN_it, c)\psi(uN_is)\delta\nu.$$

Now ν is constant on all xC, so $(uns)\nu = (untc)\nu$, for $n \in N$. Also, $(uns)\delta = (untc)\delta$ unless, for some *i*, we have $(utc)\rho \in \sigma(\beta_i)$ and $n \in N_i$, $nm \notin N_i$, that is, $n \in N_i \cap (N \setminus N_i)m^{-1}$. For each *i*, β_i has finite support and N_i is almost invariant. Thus, for fixed *c*, only a finite number of exceptions occur and so, for almost all $x \in X$, $(x, c)\phi = (x\delta\nu)^{-1}(x, c)\psi(xc)\delta\nu$. Hence ϕ is equivalent to ψ .

We have shown that Z is bijective with the set of equivalence classes of r-tuples $(1, \lambda_2, ..., \lambda_r)$ and so Z is trivial if r = 1. For r > 1, $(1, \lambda_2, 1, ..., 1)$ is equivalent to $(1, \mu_2, 1, ..., 1)$ if and only if λ_2 and μ_2 are equivalent. So Z has a subset bijective with the set of equivalence classes of almost trivial homomorphisms from $Y \times D$ to A, which is the whole of Z when r = 2.

THEOREM (11): Let C act semiregularly on X. If C has a finitely presented normal subgroup N of infinite index such that e(N) = 1, then all almost homomorphisms from $X \times C$ to A are equivalent.

PROOF: Since e(N) = 1, the only partition of N into infinite almost invariant subsets is the trivial partition $\{N\}$. From Lemmas 8 and 9, any almost homomorphism is equivalent to an almost homomorphism θ satisfying the conditions of Lemma 10, with r = 1. Then θ is equivalent to the trivial homomorphism.

THEOREM (12): Let C act semiregularly on X and suppose C has a normal subgroup N such that e(N) = 2. If e(C|N) = 1, all almost homomorphisms from $X \times C$ to A are equivalent. If e(C|N) > 1, the set Z of equivalence classes of almost homomorphisms contains a subset bijective with $A_0^{(X/C)}$, where A_0 is the set of conjugacy classes of A; if e(C|N) = 2, this subset is the whole of Z.

PROOF: Let S be an infinite almost invariant subset of N with infinite complement R. From Lemma 8, we need only consider almost homomorphisms ψ trivial on all N-sheets and with f_c almost N-invariant, where $xf_c = (x, c)\psi$. Since e(N) = 2, Lemma 9 implies that each f_c is almost equal to a function constant on all uSt and uRt. Thus

 ψ is equivalent to an almost homomorphism satisfying the conditions of Lemma 10 with r = 2. The result now follows from Lemma 6.

THEOREM (13): Let C act semiregularly on X. If C has a finitely generated free subgroup of finite index, all almost homomorphisms from $X \times C$ to A are equivalent. If C has a finitely presented normal subgroup N of infinite index with $e(N) = \infty$, then all almost homomorphisms from $X \times C$ to A are equivalent if C is finitely generated and e(C|N) = 1. If e(C|N) > 1, there are inequivalent almost homomorphisms.

PROOF: If C is finitely generated free by finite, it has a finitely generated free normal subgroup N of finite index. Using Lemmas 7 and 8, in both cases we need only consider almost homomorphisms ψ such that ψ is trivial on all N-sheets and f_c is almost N-invariant, where $xf_c = (x, c)\psi$. If C is finitely generated, then $C = \langle c_1, \ldots, c_v, N \rangle$ for some $c_1, \ldots, c_v \in C \setminus N$. From Lemma 9, for each c_j there is a finite partition of N into almost invariant subsets S such that f_{c_1} is almost equal to a function constant on almost all xN and on all uSt. Taking the intersections of all such S that arise, over all j, we obtain a finite partition of N into almost invariant subsets. If we incorporate the finite parts in one of the infinite parts, we have a partition $\{N_1, \ldots, N_r\}$ of N into infinite almost invariant subsets so that each f_{c_1} is almost equal to a function g_{c_1} constant on all uN_it and on almost all xN. Now $f_n = 1$, for $n \in N$, and $C = \langle c_1, \ldots, c_v, N \rangle$. Suppose for some $c, d \in C$, we have f_c , f_d almost equal to functions g_c , g_d constant on all $uN_i t$ and on almost all xN. Then ${}^{c}g_{d}$ is constant on almost all xN. Let xN = uNt be an exception and suppose tc = ms, with $m \in N$, $s \in T$. For $n \in N_i$,

$$(unt)^{c}g_{d} = (untc)g_{d} = (unms)g_{d} = (uN_{i}s)g_{d},$$

unless $n \in N_i \cap (N \setminus N_i)m^{-1}$. Thus cg_d is almost equal to a function constant on all uN_it and on almost all xN. Now $f_{c^{-1}} = {}^a ({}^{c^{-1}}f_c)^{-1}$ and $f_{cd} = {}^a f_c {}^c f_d$, so it follows by induction that, for all $c \in C$, f_c is almost equal to a function g_c , constant on all uN_it and almost all xN. Putting $(x, c)\phi = xg_c$, we obtain an almost homomorphism equivalent to ψ and satisfying the conditions of Lemma 10. The first two statements of the theorem now follow from Lemma 6. If e(C/N) > 1, we take an arbitrary partition of N into two infinite almost invariant subsets. Applying Lemmas 10 and 6, we know that there are almost homomorphisms not equivalent to the trivial homomorphism.

Theorem B follows from Theorems 1, 11, 12 and 13, together with the next result.

COROLLARY (14): Suppose C is a polycyclic by finite group acting semiregularly on X. All almost homomorphisms from $X \times C$ to A are equivalent unless C has Hirsch number 2.

PROOF: Let *h* be the Hirsch number of *C*. The result is trivial for h = 0, since *C* is then finite. Otherwise, *C* has a non-trivial poly-(infinite cyclic) normal subgroup *N* of finite index. If h = 1, then *N* is infinite cyclic and the result follows from Theorem 13. If h > 2, then *C* has a normal series $C = C_0 \ge N = C_1 > C_2 > 1$, with all C_i finitely presented, C/N finite, C_1/C_2 infinite, and C_2 poly-(infinite cyclic) with Hirsch number > 1. From the remarks preceding Lemma 6, $e(C_2) = 1$ and so Theorem 11 implies that an almost homomorphism from $X \times C$ to *A* is equivalent to one θ which is trivial on all *N*-sheets. Now *N* also has 1 end and so Lemmas 8 and 9 show that θ is equivalent to an almost homomorphism satisfying the conditions of Lemma 10, with r = 1. So θ is equivalent to the trivial homomorphism.

Finally, suppose h = 2. Then C has a normal subgroup N of finite index which is infinite cyclic by infinite cyclic. From Theorem 12, given $x \in X$, there is an almost homomorphism ϕ from $xN \times N$ to A which is not equivalent to the trivial homomorphism. If we can extend ϕ to $X \times C$, the extension will not be equivalent to the trivial homomorphism. Let T be a transversal of the cosets of N in C, with $\tau : C \to T$ the transversal map and $1 \in T$. For $t \in T$, $n \in N$, $c \in C$, put $(xnt, c)\theta =$ $(xn, tc((tc)\tau)^{-1})\phi$. Then θ extends ϕ to $xC \times C$ and if $d \in C$,

 $(xnt, c)\theta(xntc, d)\theta$

 $= (xn, tc((tc)\tau)^{-1})\phi(xntc((tc)\tau)^{-1}, (tc)\tau d((tcd)\tau)^{-1})\phi.$

For fixed t, c, d, this equals $(xn, tcd((tcd)\tau)^{-1})\phi = (xnt, cd)\theta$, for almost all $n \in N$. Now T is finite, so $(xe, c)\theta(xec, d)\theta = (xe, cd)\theta$, for almost all $e \in C$. Thus θ is an almost homomorphism from $xC \times C$ to A extending ϕ . Defining θ to be trivial on all other C-sheets, we have an almost homomorphism from $X \times C$ to A which is not equivalent to the trivial one.

REFERENCES

- R. BIERI: Normal subgroups in duality groups and in groups of cohomological dimension 2. J. Pure and Applied Algebra 7 (1976) 35-51.
- [2] D. E. COHEN: Groups of cohomological dimension one. Lecture Notes in Mathematics 245. (Springer-Verlag, Berlin, 1972).

224

- [3] F. T. FARRELL: The second cohomology group of G with Z_2G coefficients. Topology 13 (1974) 313-326.
- [4] F. T. FARRELL: Poincaré duality and groups of type (FP). Comm. Math. Helv. 50 (1975) 187-195.
- [5] B. HARTLEY: Complements, baseless subgroups and Sylow subgroups of infinite wreath products. *Compositio Mathematica 26* (1973) 3-30.
- [6] P. J. HIGGINS: Notes on categories and groupoids. Van Nostrand Reinhold, London, 1971.
- [7] C. H. HOUGHTON: Ends of groups and the associated first cohomology groups. J. London Math. Soc. 6 (1972) 81-92.
- [8] C. H. HOUGHTON: Ends of groups and baseless subgroups of wreath products. Compositio Mathematica 27 (1973) 205-211.
- [9] C. H. HOUGHTON and D. SEGAL: Some sufficient conditions for groups to have one end. J. London Math. Soc. 10 (1975) 89–96.

(Oblatum 3-X-1975)

[17]

Department of Pure Mathematics University College P.O. Box 78 Cardiff CF1 1XL Wales, U.K.