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1. Introduction

In the first paper of this series [9] we sketched a method of obtaining
the spectral decomposition of the family of Laplace operators 0394k

acting on automorphic forms of weight k and multiplier X belonging to
some Fuchsian group G. In the second paper [10] we introduced the
Eisenstein series E03B6(z, s ) and demonstrated various properties of these
functions. On Re (s) = 1/2 they may be considered as generalised
eigenfunctions. Our first object will be to make this statement exact,
and to prove in our case a theorem of Elstrodt [2] (in his case it is only
valid when 03B4(G)  1/2).
The chief object of this paper is to prove a completeness theorem-

to the effect that the functions above, together with a discrete set of
eigenfunctions, suffices for the spectral resolution of àk. Unfortunately
our proof of this fact is only complete when k E Z, and we shall limit
ourselves to the case k = 0 in our discussion of the completeness
theorem. This is no loss of generality, thanks to the theory of Maal3
operators, ([3], [13]). In the case k ~ Z we show that the whole of the
continuous spectrum of - L1k is contained in [1/4, ~[, and that the
eigenvalues (which lie in [03B4(G )(1- 03B4(G)), 1/4[, cf. [9]) are, to some
extent, regularly distributed. When 03B4(G)  1/2 the completeness
theorem was proved in [9]. The plan of the proofs of the facts outlined
above was sketched in [9]. As a consequence it will follow that E03B6(z, s )
and 03A6k(s, X) have analytic continuations to meromorphic functions on
C, with the possible exception of one or three points.
The notations and conventions of this work are as in [10]. Mostly

they shall be used without any further explanation. The Fuchsian
groups considered here will all be finitely generated and contain no
parabolic elements.
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2. Estimates

In [10; §6] we deduced estimates for the function Q-k(03B8, X, s ), and,
by implication, also for its partial derivatives. These estimates are not
uniform in s in unbounded sets, or, more importantly, in 0 in the

neighbourhood of 0. However, at the cost of not obtaining the optimal
behaviour in X we can obtain uniform bounds of the same type.

Let us choose 03B11, a2 &#x3E; 0, ai + «2  7T. Suppose that 0 E ]0, 03B11]. Recall
the integral representation for Q-k(03B8, X, s) ([10; Eq. (59)])

Suppose X &#x3E; 0. We move the line of integration to Im (z) = - a2 and
write z = x - i«2. Then we split the integral into two parts, correspond-
ing to x &#x3E; 0 and x  0. If, in the latter, we replace x by - x we obtain

As ex lies on the line [1, ~[ it follows after straightforward estimates
that

and

Let s = u + it. Then substituting these estimates in the equation above,
we obtain, for cr &#x3E; 0,

where

We clearly obtain the same result when X  0 and then by continuity
we have that (2) is valid for all X.

Next we note that the same method can be applied to
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and we see that this is bounded, in o- &#x3E; 0, by

for a suitable C2(U, 03B1). Integrating this from 0 to 0, we see that, for

03C3 &#x3E; 0,

Next, using [10; (35), (37)] we have

Thus, writing T = Min (03C3, 1- 03C3), and assuming that 0 03C3  1, and

Is - 1/2| ~ 1/3 we find from (3), (4) and Stirling’s formula

C2(U, a ), C3(U, 03B1) can be taken to be continuous in (r. The expression on
the left-hand side of (5) is entire in |s - 1/2| ~ 1/3 and so, by the
maximum modulus principle (5) holds also in the interior of the circle
(and so in the strip 0  03C3  1). Note that in deriving these inequalities
we have used the arbitrariness of a2 given ai to absorb powers of |s|,
but unfortunately at the cost of explicit forms for C2(U, 03B1), C3(U, a ).
Observe that (3), (5) exhibit the nature of the singularity of

Q~k(03B8, X, s ) as 03B8 ~ 0. Using this with [10; Th. 5] we obtain an integral
representation of R~~k(03B8, s, t, X) valid in Re (s) &#x3E; 0, Re(t) &#x3E; 0. The
formulae are somewhat lengthy, but not complicated, and we shall not
write them down. However, we do need the asymptotic behaviour of
R~~k(03B8, s, t, X) which can be deduced from this and (3), (5). Letting
5(+) = 1, 03B4(-) = 0 we obtain
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We shall close this section with some special results in the case
k = 0. Note that, from (1),

This is an Euler beta-function; we have

Next, as in [9], set

and define the point-pair invariant

Let hR (s ) be the Selberg transform of this kernel ([9], [14]). From the
formulae given by Selberg we see that

where x is the positive solution of

Suppose now that r &#x3E; 0. We deform the path of integration to the
polygonal path -x, -x + i/4, x + i /4, x. For large r the contribution
from the line - x + i /4, x + i /4 is O(e-r/4), unif ormly for x in compact
subsets. As u ~ x

and, as u - - x,

uniformly for x lying in compact sets. It now follows by Watson’s
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lemma that

and this estimate holds uniformly for x lying in compact subsets of
]0, ~[. If we let Il = [21r, 4w] then, for each r &#x3E; 1 there exists x E Il so

that

Using the argument of [ 10; §7] with the kernel KR where x = x (R ) E Il
it follows that there exists a cp so that, if Re (s) = 1/2, then, for
z E D7T/2,

This makes explicit an estimate in [10; §7]. The fact that KR is not

continuous does not matter; in fact it can be approximated by smooth
functions in the L 1 sense and, since E03B6(z, s ) is bounded on the compact
set Dl’ this suffices.

3. The inner product formula

Consider a function f (s, 03B6), taking values in V, and defined for s with
Re (s ) = 1/2, and e E 03A9(G). We shall also assume that

,E (C, TJ) was defined in [9]. Hence f (s, C) has a Fourier expansion of the
form (03B6 E 03A903B1(j))

We shall assume that only a finite set of the fa (s ) (a E Z*) are not
identically zero as functions of s and that all the fa (s ) are smooth with
compact support on {Re (s ) = 1/2, s 0 1/2}. These conditions are very
restrictive but shall be weakened later. Let L = {Re (s ) = 1/2} and

We shall show that vf is square integrable and calculate its norm. Let
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(·,·)v be the Hermitian form on V. Then

Since E03B6(z, s ) is smooth in C and z ([10]) it follows that there is no
difficulty in interchanging orders of integration and summation. The
inner sum can be evaluated by [10; Th. 4]. The result is

In section 2 we found approximations to

valid when cp is small, with error terms O(~). It follows by (6), the
conditions imposed on f, and the estimate on the Ual3 (s) in [10; Th. 8
(+ Th. 6)] that the error terms give a contribution 0 (cp) to the integral
above. Hence

where
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By the estimates for 03C303B103B2(s) mentioned above Ia.j(s, t) is a smooth
function of compact support on (LB{1/2}) (LB{1/2}). Moreover, the
functional equation [10; Eq. (40)] gives

and

where 03C3*03B103B2(s) is defined in [10; §4].
We consider the first and fourth terms in the above integral together.

We have to evaluate

We introduce the new variables

and setting



234

which are smooth functions of compact support on R x L, we see that
we must evaluate the integral

By the Riemann-Lebesgue lemma the first term is zero. The second
term is a Dirichlet integral and this gives

the equality following from the evaluation of I1,j(s, s ), I4.j(s, s) above.
By an analogous argument the second and third terms give rise to

In particular, if the support of f (s, C), as a function of s lies in

L+ = {Re (s ) = 1/2, Im (s ) &#x3E; 01 then this term vanishes.
We form the Hilbert space DE of functions f(s, 03BE) on L+ x 03A9(G)

satisfying (7) and with the norm

Furthermore, as in [9], let L (G, V) be the Hilbert space of square-
integrable automorphic forms of weight k and multiplier X, and norm

Then the f (s, 03B6) which we have considered, and which have support on
L+ belong to DE, and we have shown that for these functions

Let L (G, V)c be the closure in L (G, V) of v f with f as above. Then the
following theorem follows by standard Hilbert-space methods:

THEOREM 1: The map

is defined on a dense subspace of DE and takes values in L (G, V). This
map extends to an isometry of ;jE onto a closed subspace L (G, V)c of
L (G, V).
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This theorem was first proved for (not necessarily finitely generated)
G with 03B4(G)  1/2 by Elstrodt [2]. His proof is rather more direct than
ours although the crucial point in both proofs is the appearance of a
Dirichlet integral.

4. Bounds on the Eisenstein séries and eigenfunctions

Assume for the moment that k = 0. Let

If Re (s ) = 1/2 then (9), [10; Th. 1] and Cauchy’s inequality show that,
for some cp

However D+0(03C0/2, 03B1, s) = D-0(03C0/2, and so by (7) and Stirling’s
formula

Again Stirling’s formula with the first of these two gives

Thus, from [10; Th. 6] follows

In the same way we also obtain that

Next we require some information about A~(s) itself. Let h (s ) be a
function satisfying (i), (ii), (iii) of [9; §3], and let qh (z, w ) be the
associated point-pair invariant. We shall assume that h is positive on
the ’spectrum’ of - do, which Elstrodt [3] has shown to be contained in

{s :s(1 - s) &#x3E; 0}. Now let
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which therefore is the kernel of a positive integral operator on

L (G, V). It follows now from §3 and the definition of h(s) that the
contribution of the space L (G, V)c to the kernel is

Mercer’s theorem (or at least the argument leading to it in [1]) shows
that this integral is absolutely convergent and that

However, the series defining Qh(z, z) converges uniformly on compact
sets ([11], [12]) and hence

Taking the special case h (s ) = (a + s(1 - s ))-b (a &#x3E; 0, b &#x3E; 1) this gives,
f or any b &#x3E; 1,

Cauchy’s inequality shows that, for any b &#x3E; 1

Let us now consider eigenfunctions f03BC(z) E L(G, V) with parameter
s03BC(Re (s03BC) ~ 1/2). k can be arbitrary. From [10; §6] it follows that

Re(s03BC) &#x3E; 1/2, and the Fourier expansion of f03BC has the form

The set of all SIL lies in the compact interval [1/2, 1]. It follows from [10;
§6] that for s in this interval and E &#x3E; 0,

Let

Suppose ’P = (~1, ..., ’Pp), cpj  7T /2. Take 02 = 1T /2, 01 = cpj and on

evaluating the norm of f03BC integrated over the subset of DP defined by
1 s rj(z)  e03BA(j), 03B81 ~ 0j(z) * 03B82 we see that, if E &#x3E; 0 there is c6 &#x3E; 0 so
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that

From (3) we see that

This shows that

Considering, as above, the contribution of the ff, 1 to the kernel

Qh (z, w ) we obtain that

Let ko be the unique number so that

noting, however that ko might not exist. The 1/2 and ko (if it exists) are
the only possible accumulation points of {s03BC}. Further

are convergent, unless ko = 1/2, when

converges.

We now show that there is no continuous spectrum in ]1/2, 5(G)].
Suppose I ~]1/2, 03B4(G)], k0 ~ I, I compact and that there exists a family
of generalised eigenfunctions e (z, s ) with respect to a measure /£. il is
a measure supported on I so that 03BC({s}) = 0. The map

is an isometry of L 2(I, 03BC) onto a closed subspace of L (G, V). As A, is
an essentially self-adjoint elliptic operator the e (z, s ) are, for 03BC-almost
all s, C’-eigenfunctions of L1k. All these facts can be gleaned from [7;
Ch. XVIII §§8, 9, Ch. XI §1], [13; §§3, 5].
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In particular, e (z, s ) has a Fourier expansion of the form

We have also, by an unnumbered equation between [7; Ch. XVIII §9,
Eqs. (9.2) and (9.3)], that if

Applying the method of point-pair invariants again shows that, if ~ is
given there is cp’ so that

Taking two suitable values of cp and using [10; §6] shows that, if E &#x3E; 0

is given there is be E L 2(I, 03BC) so that

It follows now from (3) that, if ~ L 2(I, g)

is square-integrable on Dj = {z : 1 s ri (z)  e03BA(j), 0  Oi (z) - 7r /21. From
the definition of e(z, s) it follows that so is

This function is, however, by the estimates above and (3) square-
integrable on D*j = {z : 1 ~ rj(z) e03BA(j), 03C0/2 ~ 03B8j(z)  03C0}. Thus it is

square-integrable on Dj U D*j, which is a fundamental domain for G,,,).
It is then an automorphic form of weight k, multiplier X whose spectral
support with respect to - 0394k lies in [0,1/4]. The spectrum lies in

[1/4, ~[ ([3], [9]) and thus we have a contradiction unless c+03BC(s) = 0. But
then e(z, s) is a square-integrable eigenfunction. As 03BC({s}) = 0 and as
there are at most a countable set of eigenfunctions it follows that

e(z, s) does not exist. Hence:
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THEOREM 2: Suppose k arbitrary. If 5(0)  1/2 then

If 5 (G) ? 1/2, the continuous spectrum of - L1k lies in [1/4, ~[, and the
point spectrum lies in [03B4(G)(1 - 03B4(G)), 1/4[. If the eigenvalues are

03BB03BC = s03BC(1 - s03BC), SIL &#x3E; 1/2, and if k0 ~ [1/2, 03B4(G)], k0 - |k| E Z then

(The second term is to be omitted if ko does not exist.)

The only outstanding statement, the first, appears in [9].

COROLLARY: Ei (z, s) can be continued as a meromorphic function in
s to CB{1/2, ko, 1- k0}, smooth in z and C. The only poles in Re (s) ~ 1/2
are at the points s03BC and these are exactly first order.

PROOF: The method of [10; §8] shows that if so E ]1/2, 03B4(G)], and if
Re (sn) ~ 0, sn - so then there is a subsequence s’m, and a sequence Wm
so that

converges, uniformly on compact subsets, to a smooth eigenfunction
of àk in z, smooth also in C. Furthermore, w-. 1E!.(z, s 2) converges, for
infinitely many a E Z*, to a non-zero function. If wm ~ 00 then this is
an L 2 function (from the Fourier expansion). Thus, when s0 ~ {k0, s03BC},
wm  ~ and we can take wm to be constant. Also, the limit of E03B6(z, s ), as
s ~ so (~{k0, s, 1) must be unique. This gives, by the reflection princi-
ple, the analytic continuation to Re(s) &#x3E; 1/2, s ~ {k0, s03BC}.
Next in [10; Eq. (51)] we set s = t = 03C3 + ir, sum over a and obtain

where, if 03B6 ~ 03A903B1(j), as in [10; §7],
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Let A, (s) be as defined at the beginning of this section but now for
arbitrary k. The method of point-pair invariants shows that the

estimates (13), (14), (15) of this section hold for arbitrary k when s is

restricted to a compact set. Thus, if r ~ 0, 1 ri  1 we show that the first

three terms on the right-hand side above are O(A~(s) + 1), uniformly,
when lies in compact subintervals of ]1/2, 1]. By [10; Th. 5]

Thus, for 03C3 lying in a compact subinterval of ]1/2, 1]

uniformly. In other words

We now bring in the elementary lemma:

LEMMA: Suppose f (z) is analytic in a deleted neighbourhood of 0,
and that, if IRe (z)| ~ 1, Ilm (z)1 ~ 1,

Then f (z) can be continued to a meromorphic function in the full
neighbourhood of 0, with at most a first-order pole at 0.

PROOF: Let Ci be the square ~/2 - 3 ~i, ~/2 + 3~i, 2E + 3~i, 2E - 3 Ei,
and let L be the line segment E + iy (Iy 1::; ~). L lies inside Ci.

is bounded by (3/2)2 + 62E  7E on the vertical edges of el, and by
((3/2)2+ 32)1/2~/(3~)  7~ on the horizontal edges. Thus, by the

maximum-modulus principle, for z E L

However, for z E L
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Hence

From this it follows that

on any square with vertices ± E ± Ei. Hence, by Riemann’s theorem on
removable singularities this function can be continued to an entire
function at 0. This proves the lemma.

From the estimates above it follows that E03B6(z, s) satisfies the

conditions of the lemma and can therefore be continued to each of the

points s03BC with at most a first-order pole there.
We show finally that E03B6(z, s ) has a pole at s = SIL. Let f03BC(z) be the

corresponding eigenfunction, and let

be the Fourier expansion. Then, as in [10; §5]

Suppose E03B6(z, s ) to be regular at s = SjL. Then the left-hand side and the
second term on the right-hand side of the above equation vanish
identically ([10; Cor. to Th. 5]). But R-+k(~i(03B1)), SjL, sw, 03B1) ~ 0 (ibid.). Thus
we have a contradiction when there is an « so that c(03B1, 03BC) ~ 0 (and
there is always one). This completes the proof in Re (s) ~ 1/2. The rest
follows using the functional equation.
Note that, it follows that 03A6k(s, X) can be continued to Re(s) ~

1/2, s ~ {k0, s03BC}. One can easily check that the residue of E03B6(z, s ) is a
finite linear combination of eigenvectors and that therefore 03A6k(s) has a
pole of order at most the dimension of the eigenspace with parameter
s03BC 2013these facts we shall not need.

This now completes the investigation in the case of arbitrary k and
henceforth we shall only deal with the case k = 0. We shall however
prove some of the intermediary results for all k but it is only by means
of the estimates obtained at the beginning of this section that we can
use these effectively.

It is worth noting that the eigenvalue k0(1 2013 ko) of - L1k can be of
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infinite multiplicity (cf. [3 ; § 12]). Whether or not 1/2 or ko can be an
accumulation point of the s,, remains an open question.

5. The local trace formula

We recall the following Maaß-Selberg relation ([10; Th. 4, §7])

From [10; Th. 8] it follows that this is valid for all s, t in CB[l -
03B4(G), 03B4(G)] (C if 5(G)  1/2), with the natural interpretation at the
poles. The vanishing of the right-hand side when t = 1 - s is, as we
noted in [10], essentially the functional equation for (03C303B103B2(s)). We shall
now calculate

as a limiting version of (19). Recall that if fn is a sequence of analytic
functions converging uniformly on compact subsets to a function f,
then f n converges in the same sense to f’. This justifies the passage to
the limit in (19).

Unfortunately we must now introduce some more special functions
in order to express our results. Define

We shall also write, if a = (03B11, ..., an),

and
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Finally, the matrix over W ([10; §4]) with entries B~~(R, s, 03B1)03B403B103B2 (resp.
Mk(~ s, 03B1)03B403B103B2) will be denoted by L~~k(~, s) (resp. Mk(~, s)).
With these notations the passage to the limit gives

As long as we do not separate each of the infinite summations this is
uniformly convergent on compact sets. Let so be a regular point of
Ec(z, s). Then there is a compact neighbourhood K of so and a

constant c &#x3E; 0, so that

(03B8 given in advance), for s E K. If K1 ~~ K there is a constant

c = c1(K1, 03B8) so that (by Cauchy’s theorem)

for s E Ki. This suffices to allow us to split the terms. It is also

possible, using the estimates of §2 to find bounds on the L~~k(~, s, a )
which also prove that the series above can be split apart. All problems
of convergence arising here can be treated in this way and we shall not
deal with them further.

The formula above can be very considerably simplified by means of
the functional equation and [10; Th. 6], i.e.

In the calculations it is advantageous to use matrices over W. Let Ik (s)
be the matrix with entries qk(s, a )5a¡:l. With the notations above, and
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those in [10], we obtain

The functional equation can be written in the form

(using [10; Eq. (41), (36)]). Thus we have

From [10; Th. 3, Cor. to Th. 3] we have

Hence

Using now (20), (21) and [10; Th. 5 + Cor.] we find
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Using these identities we obtain

The reorganisation of the terms can be easily justified. Let, as in [10],

From this, and the functional equation

Expanding and applying the functional equation again

Define now

Then we finally obtain
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If

then

A simple calculation shows that

and hence 03A6’(1 2013 s)/03A6(1 2013 s) 2013 03C81(1 2013 s ) is invariant under s H 1 - s.
If we let E’)(z, s) be the corresponding Eisenstein series for G03B1(j) and

Then one finds, in just the same way as above

The terms in (24) offering the greatest difficulty are those involving
Mk(~, s ) and we shall now investigate these. From the integral
representation for Rk--(O, s, t, a)/(s(1 2013 s) - t(1 2013 t)) used in §2 we
obtain also an integral representation for Mk(~, s). Thus the limiting
case of (6) gives estimates for Mk(~, s). This can easily be verified
directly. We find, when Re (s ) = 1/2,

Let h(s) be a continuous function on L = f Re (s ) = 1/2}. From now
on assume that k = 0. We shall consider

We estimate first the ’error term’. The diagonal matrix elements of
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Ik(s)-203A30(s) are, up to a constant factor,

by (15). Choose

Then we see that the error term is

If h satisfies the conditions that

as s ~ ~, and

as s ~ 1/2. Then it follows from (17) that the integral converges and
hence the error term is O(~) = o (1).
The principal term is, up to a constant factor,

By (14),

and this, with (26), (27) and the Riemann-Lebesgue lemma show that
this limit exists and is 0.

When Re (s ) = 1/2 A~ (s ) = A (s, ’P) and then (26) and (27) show that

exists. It then follows from (24) that

converges absolutely.
Define
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Hence

This formula is the object of this section and from it we can deduce
the completeness theorem without much additional work. If 03B4(G)  1/2
then A, (s) is bounded on L and we can therefore omit the condition
(27).

6. Completeness

Let h(s) be a function satisfying the following conditions:

can be extended to an analytic function in

in the strip defined in (i),

Here e &#x3E; 0 is a fixed constant. That such functions exist can easily be
shown by examples. Form, as in [9], the associated point-pair invariant
qh (z, w), and

Let

which represents the projection of Qh(z, w ) to an operator on

L (G, V)c. By (i), (ii), (iii) it follows (cf. [9]) that Qh is the kernel of an
L 2 operator, and the h (s ) give the diagonal elements in a common
diagonalisation of all such operators (which form a commuting set of
normal operators). The operator
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has finite trace-as we shall show presently. It is also positive and
consequently it has a pure point spectrum (which will then be that
appearing in theorem 2).

Let

From [9], [12] it follows that

where « &#x3E; 1, and 03C3(z, w ) is as before (cf. §2). It follows without

difficulty that, for z E Dj,

Hence

converges absolutely. On the other hand, from [9] we have the spectral
resolution for hyperbolic groups which gives

Hence, from (28) we obtain

and the right-hand side converges. Thus

converges. This proves our assertion. Note also that

converges but that this is weaker than theorem 2 since (ii), (iv), (vi)
imply that h has a zero of order 4 at 1/2.
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THEOREM 3: L(G, V)c spans the continuous spectrum of - 03940.

This theorem is the chief result of this paper. However we note that

I2 has already been calculated, Il can be calculated by the transforma-
tions of Selberg [14], and

In fact, note that 7i, I, exist if we drop condition (vi) above, and that
Qh - Qch is still trace-class by theorem 2. Thus, for h (s ) satisfying
(i),..., (v) (such that h we call admissible ),

We now calculate 11, but to avoid inessential difhculties we shall
assume that G has no elliptic elements.
Let {G} be a set of representatives of conjugacy classes in G, and let

Ng be the normaliser of g in G. Let {G}0 be the subset of G consisting
of those elements not conjugate to any element of any G03B1(j). Let

and

Then it follows that

Let D(g) be a fundamental domain for Ng. Then
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The calculation of the integrals offer no difhculties and we obtain

where

H = set of elements representing the primitive hyperbolic conjugacy
classes,

N ( y ) = multiplier of y, and
b(03B3) = 1 if y is not conjugate to a generator of a G03B1(j),

= 1/2 otherwise.

Thus combining our results we see that for h (s ) satisfying (i),..., (v)
the following version of the Selberg trace formula holds

It is not difficult to see that condition (v) can in general be removed.
This follows by a fairly simple and standard approximation argument
but we shall not discuss it here. If 5(G)  1/2 then, as remarked at the
end of §5, condition (iv) can be dropped. In this case it also follows that
the left-hand side is zero as there are no eigenfunctions (cf. [9]).
As in the case of groups of the first kind, u (D 7T 12) is a topological

invariant. In fact, if G is generated by A,, B1, ..., Ag, Bg, El,..., Er,
H1, ..., Hp, 03C01, ..., 7Tq satisfying

and

so that

(a) any elliptic element of G is conjugate to a power of some Ej,
(b) H; is conjugate to a generator of G03B1(j), and
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(c) any parabolic element of G is conjugate to some power of some

1Tj.

Then an application of the Gauss-Bonnet theorem shows that

Let us now consider the case 03B4(G )  1/2. We define the Selberg
zeta-function in the region Re (s ) &#x3E; 03B4 (G),

Then, using a well-known identity,

Summing over k gives

From this it follows that

Putting this into the Selberg trace formula gives

Since we can find a sequence of admissible h approximating 5ro + 03B4-r0
(5x is the Dirac 5- ’function’ at x) it follows that the expression in
brackets, which is even, is zero. That is

If k = 0 it follows that
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This, with [10; Eq. (37)] gives

Then a simple calculation shows that

As

we have

It is worth noting that in this case

where a = (03B11, ..., an ). This formula shows quite clearly the analytic
structure of 03C8(s).
Now note that the residues at the poles of

are integral, and so we define

exists as a meromorphic function, with a pole of order 2m + 1 at

s =-m, m ~ Z, m &#x3E; 0.

(30) is valid at first only for Re (s ) = 1/2, but as the left-hand side is
analytic and defined in 03B4(G)  Re(s)  1 - 03B4(G) it follows that it is

also valid there. Integrating, and using (31) we obtain an equation
which can be written in the two forms

valid for all s. The second gives the analytic continuation and the
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analytic properties of Z(s ). The first can be regarded as an explicit
formula for 03A6(s), useful in 03B4(G)  Re (s )  1 - &#x26; (G) -

7. A special case

The case when 5(G) = 1/2 exhibits some special features, especially
in respect to the behaviour at 1/2. The object of this section is to

examine this case. So, unless otherwise stated, 03B4(G) = 1/2 but k, X are
allowed to be arbitrary. Suppose firstly that k - 1/2 ~ Z.
The starting point is again [10; Th. 4]. Fix ~ and let

and

With these notations [10; Eq. (51)] gives

Now, as remarked previously, in Re(s) &#x3E; 1/2

has negative entries. Clearly

I(s, a ) was mentioned in [10; §6], where it was noted that

and so, as D+k(03B8, a, s) and D-k(03B8, 03B1, s) are linearly independent at
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s = 1/2, I(s, a ) is positive definite. Thus

Using (6) it follows that

The technique of the lemma of §6 shows now that

with fixed a, (3, is bounded in a neighbourhood of 1/2 in Re (s ) &#x3E; 1/2.
The method of [10; §§7, 8] shows that the same is true of (s -
1/2)E03B6(z, s).
Again by the method of [10; §7] there is a sequence Sm ~ 1/2 along

which (sm - 1/2)E03B6(z, Sm) converges uniformly on compact subsets (of
z and C). Suppose that

Let s’m be another such sequence with corresponding t’03B103B2.
Taking the limit in [10; Eq. (51)] along (sm) shows that, for a certain

function fl3 (z),

Taking now the limit along (s 2)

Interchanging the roles of (sm ) and (s 2) and using [10; Th. 6] shows that

Hence E,(z, s )(s - 1/2) has a continuous extension to Re (s) = 1/2.
Hence so does D-k(03B8, a, s)03C303B103B2(s)(s - 1/2), for fixed 0, uniformly in a, .8.
Consequently, by [10; Eqs. (62), (64)], and the fact that Jk(1/2)-1 = 0,
03A6(s) = 03A6k(s, X) has also a continuous extension to Re (s) = 1/2 (cf.
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[5]). However

shows that 03A6(1/2) ~ 0. Thus 03A6(s) ~ 0 in a neighbourhood of 1/2 in
Re (s) - 1/2. Hence 03A6(s) is bounded (by the functional equation) in a

neighbourhood of 1/2. By Riemann’s isolated singularities theorem
0(s) can be continued to a regular function at 1/2. By [10; Th. 8]
E03B6(z, s) has no singularities at any points in Re (s) ~ 1/2 except
perhaps at s = 1/2. As 03A6(s) ~ 0 in a neighbourhood of 1/2 it follows
from the functional equation that

has a continuous extension to Re(s) = 1/2 in Re(s) ~ 1/2. Thus

E03B6(z, s)(s - 1/2) has a continuous extension to 1/2. Again, by
Riemann’s theorem on removable singularities it follows that

Ec(z, s)(s - 1/2) can be continued to a regular function at s = 1/2.
Now suppose that k - 1/2 E Z. The argument above fails at the point

where we showed that (s - 1/2)E03B6(z, s) has a unique limit at 1/2, since
R+-k(~, 1/2, 1/2, a ) = 0. However, since

(from (6)) the same argument shows that tal3 = 0. Thus (s - 1/2)E,(z, s)
has a unique limit 0 at s = 1/2. The rest of the argument goes through as
before, remembering that now Jk(s) is regular and non-zero at s = 1/2.
(There is one exception to this last statement, for if k - 1/2 E Z then
q’(s, 0) = 0 but this can easily be dealt with.) Thus

THEOREM 4: Suppose that 5(0) = 1/2. Then Ec(z, s)(s - 1/2) and
03A6k(S, X) are regular in a neighbourhood of s = 1/2, and hence

meromorphic in the s-plane.

Now let

This has abscissa of convergence 03B4(G) and essentially the same
behaviour as s ~ 03B4(G) as E03B6(z, s ), X = Id ([11]). By the corollary to
theorem 2 and theorem 4 we see that if 03B4(G ) ~ 1/2 then E03B6(z, s ) is

meromorphic in a neighbourhood of 03B4(G), whereas if 03B4(G )  1/2 this
was proved in [10; §4]. By Landau’s theorem, since the E,(z, s ) are
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Dirichlet series with positive terms when X = Id, that E03B6(z, s ) has a

singularity at s = 03B4(G). From the results of [11] and theorem 4 this pole
is first-order if 03B4(G) ~ 1/2. Consequently

THEOREM 5: Suppose k = 0, X = Id. Then E03B6(z, s) has a pole at
s = 03B4(G), of the first order if 03B4(G) ~ 1/2. Furthermore

f (z, w ; s)(s - 03B4(G)) is bounded below by a positive quantity as s ~
5(G).

This shows that not only is 5(G) the abscissa of convergence of
f(z, w ; s ) but also f(z, w ; s ) diverges at s = 03B4(G). Using the spectral
decomposition of f (z, w ; s ) it is not possible to obtain much finer
information, but we shall not deal with this topic here.

8. Concluding remarks

The results of this paper are far from complete. The most obvious
outstanding problem arising from it is to extend theorem 3 to arbitrary
k. This seems to be technical in so far that good lower bounds for
Qk(e, X, s) are needed.
A much more fundamental problem, however is that of deciding

whether or not the set Is, 1 appearing in theorem 2 can really be infinite.
This seems to require more than the very general methods which are
used here.

It is worth remarking that the results here have a great deal in
common with scattering theory, and the theory of the Schrôdinger
equation (cf. [16]). The techniques used there to produce generalised
eigenfunctions do not seem to apply in our case, although very
similiar methods can be used in the theory of groups of the first kind
with parabolic elements ([4], [6], [8], [15]). Could such a method be
found, it would, presumably, shed quite a lot of light on the analytic
nature of 03A6(s), which one would like to exhibit as some sort of

Fredholm determinant of a resolvent kernel.

The case of groups of the first kind can be regarded as a limiting case
of the theory described in this series. This appears formally on letting
the G03B1(j) ’shrink’ to parabolic. This is rather suggestive and leads one
to hope that if the theory here could be extended to more general Lie

groups than SL (2, R), that one could infer something about the

spectral resolution for these groups. However, even the simplest case,
that of Kleinian groups in SL (2, C) (also of rank 1) offers formidable,
but very interesting diinculties. In this case the spectral resolution is
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known (Selberg). It is also worth noting that the space W, which
classifies the continuous spectrum, is the space of L 2 functions from
the boundary of the Riemann surface G BH, with values in V. This

phenomenon appears also in Euclidean spaces and it would be interest-
ing to know just how general it is.

Notes added in proof

1. Since this paper was written 1 have received a preprint from Prof.
John D. Fay, "Fourier Coefficients of the Resolvent for a Fuchsian
Group", where the same problems are treated in a rather different way.
In particular, some of the open questions mentioned above are no longer
open.

2. In [9] there are some misprints and unclarities. In §3 the argument is
rather sketchy; this is more fully dealt with in a forthcoming paper,
"Spectral Theory and Fuchsian Groups", to appear in Math. Proc.
Camb. Phil. Soc. Also, in §3, conditions (i), (ii), (iii) should always be
replaced by (i’), (ii’), (iii’). The most serious misprints are listed below. 1
am indebted to J. Elstrodt for a set of very detailed comments on [9]
from which these are taken.



259

REFERENCES

[1] J. DIEUDONNÉ: Foundations of Modem Analysis. Academic Press, New York,
1960.

[2] J. ELSTRODT: Über das Eigenwertproblem der automorphen Formen in der hyper-
bolischen Ebene bei Fuchsschen Gruppen zweiter Art. Dissertation, München, 1970.

[3] J. ELSTRODT: Die Resolvente zum Eigenwertproblem der automorphen Formen in
der hyperbolischen Ebene.
Teil I. Math. Ann. 203 (1973) 295-330,
Teil II. Math. Z. 132 (1973) 99-134,
Teil III. Math. Ann. 208 (1974) 99-132.

[4] L. D. FADEEV: Expansion in eigenfunctions of the Laplace operator on the
fundamental domain of a discrete group on the Loba010Devski~ plane. Trans. Moscow
Math. Soc. 17 (1967) 357-386.

[5] A. GROTHENDIECK: La théorie de Fredholm. Sém. BOURBAKI, 1954, No. 90.
[6] S. LANG: SL2(R). Addison-Wesley, Reading, Mass., 1975.
[7] K. MAURIN: Methods of Hilbert spaces. Warsaw, 1972.
[8] H. NEUNHÖFFER: Über die analytische Fortsetzung von Poincaré-Reihen. Disserta-

tion, Heidelberg, 1972.
[9] S. J. PATTERSON: The Laplacian operator on a Riemann surface. Compositio

Mathematica 31 (1975) 83-107.
[10] S. J. PATTERSON: The Laplacian operator on a Riemann surface, II. Compositio

Mathematica 32 (1976) 71-112.
[11] S. J. PATTERSON: The limit set of a Fuchsian group. Acta Mathematica 136 (1976)

241-273.

[12] S. J. PATTERSON: A lattice-point problem in hyperbolic space. Mathematica 22
(1975) 81-88.

[13] W. ROELCKE: Das Eigenwertproblem der automorphen Formen in der hyperbolis-
chen Ebene.

I. Math. Ann. 167 (1966) 292-337,
II. Math. Ann. 168 (1967) 261-324.

[14] A. SELBERG: Harmonic analysis and discontinuous groups in weakly symmetric
Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20

(1956) 47-87.
[15] A. SELBERG: Harmonic Analysis, II. Teil. (Unpublished lecture notes, Göttingen,

1954).
[16] B. SIMON: Quantum Mechanics for Hamiltonians defined as quadratic forms.

Princeton, 1971.

(Oblatum 28-VII-1975) Mathematisches Institut der Universitât
34 GÔTTINGEN
Bunsenstr. 3/5
Bundesrepublik Deutschland


