
COMPOSITIO MATHEMATICA

S. KWAPIEŃ
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Abstract

The classical Hardy classes Hp (1 ~ p  ~) regarded as Banach

spaces are investigated. It is proved: (1) Every reflexive subspace of
L’ is isomorphic to a subspace of H1. (2) A complemented reflexive
subspace of H 

1 is isomorphic to a Hilbert space. (3) Every infinite
dimensional subspace of H 

1 which is isomorphic to a Hilbert space
contains an infinite dimensional subspace which is complemented in
Hl. The last result is a quantitative generalization of a result of Paley
that a sequence of characters satisfying the Hadamard lacunary
condition spans in H1 a complemented subspace which is isomorphic
to a Hilbert space.

Introduction

The purpose of the- present paper is to investigate some linear
topological and metric properties of the Banach spaces HP, 1 ~ p  00
consisting of analytic functions whose boundary values are p-

absolutely integrable. The study of Hp spaces seems to be interesting
for a couple of instances: (1) it requires a new technique which
combines classical facts on analytic functions with recent deep results
on LI-spaces; several classical results on the Hardy classes seem to
have natural Banach-space interpretation. (2) The spaces Hp and the
Sobolev spaces are the most natural examples of "Lp-scales" essen-
tially different from the scale LP.

*Research of the second named author was partially supported by NSF Grant MPS
74-07509-A-02.
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Boas [4] has observed that, for 1  p  00, the Banach space Hp is

isomorphic to LP. The situation in the "limit case" of H 1 is quite
different. For instance H1 is not isomorphic to any complemented
subspace of LB more generally-to any L1-space (cf. [16], Pro-

position 6.1); Hl is a dual of a separable Banach space (cf. [14]) while
L’ is not embeddable in any separable, dual cf. [23]; in contrast with
L1, by a result of Paley (cf. [21], [31], [7] p. 104), H’ has com-

plemented hilbertian subspaces hence it fails to have the Dunford-

P ettis property.
On the other hand in Section 2 of the present paper we show that

every reflexive subspace of L’ is isomorphic to a subspace of H1.
Furthermore an analogue of the profound result of H. P. Rosenthal
[27] on the nature of an embedding of a reflexive space in L’ is also
true for H1. This implies that a complemented reflexive subspace of
H is necessarily isomorphic to a Hilbert space. In Section 3 we study
hilbertian (= isomorphic to a Hilbert space) subspaces of Hl. We
show that H1 contains "very many" complemented hilbertian sub-
spaces. Precisely: every subspace of H 1 which is isomorphic to t 2
contains an infinite dimensional subspace which is complemented in
Hl. This fact is a quantitative generalization of a result of Paley,
mentioned above, on the boundedness in H1 of the orthogonal
projection from H1 onto the closed linear subspace generated by a
lacunary sequence of characters.

Section 4 contains some open problems and some results on the
behaviour of the Banach-Mazur distance d(HP, Lp) as p ~ 1 and as
p ~ ~.

1. Preliminaries

Let 0  p ~ oo. By LI (resp. LI) we denote the space of 21T-periodic
complex-valued (resp. real-valued) measurable functions on the real
line which are p-absolutely integrable with respect to the Lebesgue
measure on [0, 21r] for 0  p  00, and essentially bounded for p = 00.
C203C0 stands for the space of all continuous 21r-periodic complex-valued
functions. We admit
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The n-th character Xn is defined by

Given f E L we put

If 0  p  00, then Hp is the closed linear subspace of Lp which is

generated by the non-negative characters, {Xn : n ~ 0}. We define

By A we denote the closed linear subspace of HOO generated by the
non-negative characters. We put Hp0 = {f ~ Hp: (0) = 0} and Ao =
U EA: f(O) = 01.

Let f E HP. We denote by f a unique analytic function on the unit
disc {z: Izi  1} such that

for almost all t.

For u E LR we define X(u) = v to be the unique real 203C0-periodic
function such that for f = u + iv there exists an f analytic on the unit
disc satisfying (1.1) and such that f (0) = 203C0-1 f203C00 u(t)dt. Recall (cf.
[33], Chap. VII and Chap. XII).

PROPOSITION 1.1: (i) X is a linear operator of weak type (1, 1).
(ii) For every p E (0, 1) there exists a constant pp such that

(iii) For every p E (1, ~) there exists a constant 03C1p ~ C max (p,
pl(p - 1)), where C is an absolute constant, such that

Next, for f E LI, we define B(f) to be the unique function in ~0p1 HP
such that
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Clearly B is a one to one operator and if g = B(f), then

Combining Proposition 1.1 with the above formulae we get (cf.
Boas [4]).

PROPOSITION 1.2: (i) B is a linear operator of weak type (1, 1) from
L1 into ~0p1 H,

(ii) For every p E (0, 1) there exists a constant 03B2p such that

(iii) For every p C (1, ~) B maps isomorphically L’ onto Hp ; there
exists a constant 03B2p ~ 2pp + 3 such that

A relative of B is the orthogonal projection 9- defined by

where g03C0 (t) = g (t + 03C0). Clearly, by Proposition 1.2, 2(L1) c ~0p1Hp
and, for 1  p  -, 9, regarded as an operator from Lp is a projection
onto Hp with I/221/p ~ JIB Ilp. In fact we have

2. Reflexive subspaces of H1

PROPOSITION 2.1: A reflexive Banach space is isomorphic to a

subspace of Hl if (and only if) it is isomorphic to a subspace of LI.

PROOF: By a result of Rosenthal (cf. [27]) every reflexive subspace
of L1 is isomorphic to a reflexive subspace of Lr for some r with
1  r ::; 2. Therefore it is enough to prove that, for every r with

1  r~2, the space Lr is isomorphic to a subspace of Hl. It is well
known (cf. e.g. [27], p. 354) that, for r ~ [1, 2], there exists in

~0pr L’ a subspace Er which, for every fixed p E (0, r), regarded as
a subspace of LP is isometrically isomorphic to Lr. Moreover (if
r &#x3E; 1), for every p and P2 with 1 ~ p  P2  r, there exists a constant
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03B3p1,p2 such that

Now fix p 1 and p, with 1  p1  p2  r. By Proposition 1.2(iii), the

operator B embeds isomorphically Er regarded as a subspace of Lpl
into HP-. Clearly we have the set theoretical inclusion Hp1 ~H1. Thus
it suffices to prove that the norm ~·~1 and ~·~p1 are equivalent on B(Er).
By (1.2) and (2.1), for every g E B(Er) we have Ilgllp2::; kllgilpi where
k = 03B3p1,p2 · 203B2p1. Letting s = (pl - 1)(p2- 1)-1, in view of the logarithmic
convexity of the function p - ~g~pp, we have

whence

This completes the proof.

REMARK: Using the technique of [15] (cf. also [19]) instead of the

logarithmic convexity of the function p ~ ~·~pp one can show that on
B(Er) all the norms ~·~p are equivalent for 0  p  r (in fact equivalent
to the topology of convergence in measure). Hence if 0  p ~ 1, then
Hp contains isomorphically every reflexive subspace of L’. We do
not know any satisfactory description of all Banach subspaces of H’
for 0  p  1.

Our next result provides more information on isomorphic em-
beddings of reflexive spaces into H’. It is a complete analogue of
Rosenthal’s Theorem on reflexive subspaces of L’ (cf. [27]).

PROPOSITION 2.2: Let X be a reflexive subspace of Hl. Then there
exists a p &#x3E; 1 such that for every r with p &#x3E; r &#x3E; 1 the natural em-

bedding j : X ~ H1 factors through Hr, i.e. there are bounded linear

operators U : X ~ Hr and V : Hr ~ Hl with VU = j. Moreover U and
V can be chosen to be operators of multiplication by analytic func-
tions.

PROOF: By a result of Rosenthal ([27], Theorem 5 and Theorem 9),
there exists a p &#x3E; 1 such that for every r with p &#x3E; r &#x3E; 1 there exist a
K &#x3E; 0 and a non-negative function ç with 1/203C0 ~203C00 ’P (t)dt = 1 such
that
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(In this formula we admit 0/0 = 0). Let us set Ji = max (ç, 1). Let g be the
outer function defined by

and let

Then (cf. [7], Chap. 2) g ~ Hr/(r-1), |g(t)| = 03C8(t)(r-1)/r for t a.e.,

|(z)| ~ 1 for Izl  1 and g-’F- H=.
Let us set U (x ) = x/g for x E X and V(f) = g - f for f E H r. Since

~g~r/(r-1) ~ 2(r-1)/r, V maps Hr into H1 and Il VII ~ 2(r-1)/r. Finally, for every
x G X, we have

Thus U (x) ~ Lr. Therefore U (x ) E H 
r 

because U (x) ~ H1 being a
product of an x E H’ by g-1 E Hoo.

COROLLARY 2.1: A complemented reflexive subspace of Hl is

isomorphic to a Hilbert space.

PROOF: Let X be a complemented reflexive subspace of H1. Then,
by Proposition 2.2, there exists a p &#x3E; 1 such that for every r with

p &#x3E; r &#x3E; 1 there are bounded linear operators U and V such that the

following diagram is commutative

where j : X ~ H 1 is the natural inclusion and P : H1 ~ X is a

projection. Thus, for every r E (1, p), P j = the identity operator on X
admits a factorization through Hr. Therefore X is isomorphic to a
complemented subspace of Lr because, by Proposition 1.2(iii), Hr is
isomorphic to Lr. Since this holds for at least two different r E (1, p),
we infer that X is isomorphic to a Hilbert space (cf. [16] and [18]).
REMARKS: (1) The following result has been kindly communicated

to us by Joel Shapiro.
If 0  p  1 and if a Banach space X is isomorphic to a comple-

mented subspace of Hp, then either X is isomorphic to ~1 or X is
finite dimensional.
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The proof (due to J. Shapiro) uses the result of Duren, Romberg
and Shields [8], sections 2 and 3:

(D.R.S) the adjoint of the natural embedding g ~  of Hp into the
space BP is an isomorphism between conjugate spaces. Here BP

denotes the Banach space of holomorphic functions on the open unit
disc with the norm

It follows from (D.R.S) that a complemented Banach subspace of Hp
(0  p  1) is isomorphic to a complemented subspace of Bp. Next
using technique similar to that of [17], Theorem 6.2 (cf. also [31]) one
can show that BP is isomorphic to ~1. Now the desired conclusion

follows from [22], Theorem 1.

Problem (J. Shapiro). Does Hp (0  p  1) actually contain a com-

plemented subspace isomorphic to ~1?
(2) Slightly modifying the proof of Proposition 2.2 one can show

the following

PROPOSITION 2.2a: Let 1 ~ po  2. Let X be a subspace of HP- which
does not contain any subspace isomorphic to tl-. Then there exists a

p E (po, 2) such that, for every r with po  r  p there exists an outer

g E Hp0r(r-p0)-1 with g ~ 0 such that j = VU where U : X - Hr and

V : Hr ~ Hp0 are operators of multiplication by l/g and g respectively
and j : X ~ Hp0 denotes the natural inclusion.

The proof imitates the proof of Proposition 2.2; instead of Rosen-
thal’s result we use its generalization due to Maurey (cf. [19], Théorème
8 and Proposition 97).

Our next result is in fact a quantitative version of Proposition 2.2a
for hilbertian subspaces.

PROPOSITION 2.3: Let K ~ 1 and let 1 s p ~ 2. Let X be a subspace
of HP and let T : ~2 ~ X be an isomorphism with ~T~ ~T-1~ ~ K.
Then there exists an outer cp E Hl such that

where y is an absolute constant, in fact 03B3 ~ 4/Y;.
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PROOF: A result of Maurey ([19] Théorème 8, 50a, cf. also [20]),
applied for the identity inclusion X ~ Lp, yields the existence of a
g e Lr where 1/r = 1/p - 1/2 such that Ilglir = 1 and

where C is the smallest constant such that

for every finite sequence (f;) in X. A standard application of the
integration against the independent standard complex Gaussian vari-
ables ei gives

where kp = (1/03C0 ~+~-~ ~+~-~ (x2 + y2)p/2e-(x2+y2)dxdy)1/p. Since kp ~ k1 =

V77/2, one can replace C in (2.5) and in (2.6) by KIkI = 2K/Vn-.
Now, by [14], p. 53, there exists an outer function ~ E H satisfying

(2.2), (2.3) and such that

for almo st all t

It can be easily checked that (2.7) and (2.5) imply (2.4) with y = 2/k,.
Our last result in this section gives some information on reflexive

subspaces of the quotient L1/H10.

PROPOSITION 2.4: Let X be a reflexive subspace of LI such that
(k) = 0 for k &#x3E; 0, f E X. Then the sum X + Hô is closed, equivalently
the restriction of the quotient map L1 ~ L’lHo’ to X is an isomorphic
embedding.

PROOF : Let 9 (f) = f - 2(f) f or f E L 
1 where 21 is the projection
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defined, by (1.3). It follows from Proposition 1.2(ii) that there exists a
constant a &#x3E; 0 such that

On the other hand if X is a reflexive subspace of L’, then X contains
no subspace isomorphic to ~1. Hence (cf. [15], [19]) the norm topology
in X coincides with the topology of convergence in measure, in

particular

for every sequence

Thus there exists a constant bx = b &#x3E; 0 such that

Now fix f E X and g E Hô. Then 9P(g) = 0, and 9P(f) = f because
(k) = 0 for k &#x3E; 0. Hence

Thus the sum X + Hô is closed.

REMARK: Proposition 2.4 yields, in particular, the following "clas-
sical" result.

If (nk) is a sequence of negative integers such that the space

is isomorphic to (2 (in particular if lim (nk+llnk) &#x3E; 1) then the space
~ + H1 is closed or equivalently in the "dual language" the operator
A ~ ~2 defined by f ~ ((- nk)) is a surjection.

3. Hilbertian subspaces of H’

The existence of infinite-dimensional complemented hilbertian

subspaces of H1 follows from the classical result of R.E.A.C. Paley
(cf. [21], [29], [7] p. 104, [33], Chap. XII, Theorem 7.8) which yields
(P). If lim (nk+1/nk) &#x3E; 1, then the closed linear subspace of H1 spanned
by the sequence of characters (~nk)1~k~ is isomorphic to e2 and

complemented in Hl.
On the other hand there are subspaces of H1 spanned by sequences

of characters which are isomorphic to t2 but uncomplemented in H 1

(cf. Rudin [30] and Rosenthal [26]).
In this section we shall show that, in fact, H contains "very many"

complemented and "very many" uncomplemented hilbertian sub-
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spaces not necessarily translation invariant. The situation is similar to
that in LI (and therefore HI, by Proposition 1.2(iii)) for 1  p  2 (cf.
[25], Theorem 3.1) but not in L’ which contains no complemented
infinite-dimensional hilbertian subspaces ([13], [22]).

If (xn) is a sequence of elements of a Banach space X then [xn]
denotes the closed linear subspace of X generated by the xn’s.
Let 1 ~ K  00. Recall that a sequence (xn) of elements of a Banach

space is said to be K-equivalent to the unit vector basis of

provided there exist positive constants a and b with ab = K such that

for every finite sequence of scalars (tn).
Now we are ready to state the main result of the present section

THEOREM 3.1: Let 1 ~ K  ~. Let (fn)1~n~ be a sequence in Hl
which is K-equivalent to the unit vector basis of (2. Then, for every
E &#x3E; 0, there exists an infinite subsequence (nk) such that the closed
linear subspace [fnk] spanned by the sequence (fnk) is complemented in
H’. Moreover, there exists a projection P from Hl onto [fnk] with

JIP Il  4K + E.

The proof of Theorem 3.1 follows immediately from Propositions
3.1, 3.2 and 3.3 given below. We begin with the following general
criterion

PROPOSITION 3.1: Let X be a Banach space with separable con-
jugate X*. Assume that there exists a constant c = cx such that every
weakly convergent to zero sequence (ym) in X contains an infinite
subsequence (ymk) such that

for every finite sequence of scalars (tk). Then, for every K ~ 1 and for
every E &#x3E; 0, every sequence (x*n) in X* which is K-equivalent to the
unit vector basis of (2 contains an infinite subsequence (x*nk) such that
the closed linear subspace [x *nk] admits a projection
P : X* ~ [x*nk] with IIP Il 2Kc + E.

onto

PROOF : Define V : ~2 ~ X* by V((tn)) = 03A3n tnx*n for (tn) E e2. Clearly
V is an isomorphic embedding with ~V~ ~V-1~ ~ K (V-1 acts from
V(~2) onto ~2). Since e2 is reflexive, V is weak-star continuous.
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Hence there exists an operator U : X ~ ~2 whose adjoint is V. It is

easy to check that the operator U is defined by U(x) = (x*n(x))1~n~
for x E X. Since ~U*((tn))~ = ~V((tn))~ ~ ~V-1~-1(03A3n|tn|2)1/2 for every

(tn) E ~2, the operator U is a surjection such that, for every r &#x3E; Il V-’ll,
the set U((x E X : ~x~ ~ rl) contains the unit ball of ~2 (cf. [32] Chap.
VII, §5). Hence there exists a sequence (xs) in X such that sup ~xs~ ~ r
and ( U(xs )) is the unit vector basis of ~2, equivalently x*n(xs) = Sn for

n, s = 1, 2,.... Since X* is separable and sup ~xs~ ~ r, there exists an
infinite subsequence (xsq) which is a weak Cauchy sequence. Let us
set Y- = xs2m -’xs2m-l for m = 1, 2,.... Clearly the sequence (ym) tends
weakly to zero. Thus the condition imposed on X yields the existence
of an infinite subsequence (ymk) satisfying (3.1). Let us set nk = S2mk
for k = 1, 2,... and put

Clearly we have

Thus, by (3.1),

Thus P is a linear operator with IIP ~ ~ 2cr ~ VII (because
sup ~ymk~ ~ 2 sup ~xs~ ~ 2r). Letting r  ~V-1~ + ~(2c~V~)-1, we get

~P~  2K + ~. Since P(x*) ~ [x*nk] for every x* E X* and since

P(x*nk) = x*nk for k = 1, 2,..., we infer that P is the desired pro-

jection.

REMARK: The assertion of Proposition 3.1 remains valid if we

replace the assumption of separability of X* by the weaker assump-
tion that X does not contain subspace isomorphic to ~1. To extract a
weak Cauchy subsequence from the sequence (xs) we apply the result
of Rosenthal [28].
To apply Proposition 3.1 we need a description of a predual of H 1.

Our next proposition is known. Its part (ii) is a particular case of the
Caratheodory-Fejer Theorem, cf. [1].
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PROPOSITION 3.2: (i) The conjugate space of the quotient C27TIAo is
isometrically isomorphic to Hl.

(ii) The space C27TIAo is isometrically isomorphic to a subspace of
the space of compact operators on a Hilbert space.

PROOF: (i) The desired isometric isomorphism assigns to each

f E H the linear functional x*f defined by

for the coset

The fact that this map is onto (C2,IA,,,)* follows from the F. and M.
Riesz Theorem. For details cf. [14], p. 137, the second Theorem.

(ii) To each coset {f+A0} we assign the linear operator Tf : H2 ~ H2
defined by

Clearly the definition of Tf is independent of the choice of a re-
presentative in the coset {f + A0}. Moreover, for every f, E {f + A0},
we have

Thus ~Tf~ ~ inf {~f1~~: f, E lf + A0}} = Iltf + Aolll.
Conversely, it follows from part (i) and the Hahn Banach Theorem

that there exists a ç E H with Il’P III = 1 such that 1/203C0 ~203C0 f(t)~ (t )dt =
~{f + A0}~. By the factorization theorem (cf. [14], p. 67), we pick
functions g and hl in H2 with ghl = ç and IIgll2 = ~h1~2 = 1 (cf. [14], p.
71), and we define h E H2 by h(t) = hl(- t). Then (Tf(g), h) =
~{f + A0~ = ~{f + A0}~~g~2~h~2. Hence ~Tf~ litf + A0}~. This shows that
the map {f + A0} ~ Tf is an isometrically isomorphic embedding of
C203C0/A0 into the space of bounded operators on H2. Finally observe
that each operator Tf is compact because the cosets {{~-n + A0}: n = 0,
1, 2,...} are linearly dense in C2jr/Ao (by the Fejer Theorem) and
Tx-n = 03A3nj=0 (., Xj)Xn -j is an (n + 1)-dimensional operator (n = 0, 1, ...).
This completes the proof.
To complete the proof of Theorem 3.1 it is enough to show that the

space K(h) of the compact operators on an infinite-dimensional
Hilbert space h (and therefore every subspace of K(h)) satisfies the
assumption of Proposition 3.1. Precisely we have

PROPOSITION 3.3: Let h be an infinite-dimensional Hilbert space.
Let (Tm) be a weakly convergent to zero sequence in K(h). Then, for
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every E &#x3E; 0, there exists an infinite subsequence (mk) such that

for every finite sequence of scalars (tk).

PROOF: The assumption that the sequence (Tm) converges weakly
to zero in K(h) means

Here (·,·) denotes the inner product in h. Let (e03B1)03B1~H be an or-
thonormal basis for h. Since each Tm is compact, the ranges of Tm and
its adjoint Tm are separable. Hence there exists a countable set 9to
such that Tm(x), e03B1&#x3E; = T*m(x), e03B1&#x3E; = 0 for every m = 1, 2, ... for every
x ~ h and for every a E H/H0. Let j~ 03B1(j) be an enumeration of the
elements of 9to. Let furthermore Pn denote the orthogonal projection
onto the n-dimensional subspace generated by the elements e03B1(1),

ea(2), ..., ea(n). Since dim Pn (h) = n, it follows from (3.2) that

Next the compactness of each Tm and the definition of the set H0
yield

Let E &#x3E; 0 be given. Assuming that supm IITml1 &#x3E; 0 we fix a positive
sequence (Ek) with (03A3~k=1 4~2k) ~ ~ sup- Il T,. il. Now using (3.3) and (3.4)
we define inductively increasing sequences of indices (mk)k~1 and

(nk)kao with m1 = 1 and no = 0 so that (admitting Po = 0)

Let us put, for k = 1, 2,...,

Clearly (3.5) and (3.6) yield
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Let (tk) be a fixed finite sequence of scalars. Since the projections
Pnk - Pnk-1 (k = 1, 2,...) are orthogonal and mutually disjoint, for
every x E h, we have

Hence

Similarly

Thus

This completes the proof of Proposition 3.3 and therefore of Theorem
3.1.

REMARKS: (1) Let us sketch a proof of Paley’s result (P ) which
uses the technique of the proof of Theorem 3.1.
Assume first that (mk) is a sequence of positive integers such that

Let Tm = Tx-m for m = 0, 1,... be the compact operator on H2
which is the image of the coset {~-m + A0} by the isometry C203C0/A0 ~
K(H2) defined in the proof of Proposition 3.2(ii). Then (TmXh Xk) = 0
for j + k ~ m and (T-Xi, ~k&#x3E; = 1 for j + k = m. Let Pm : H2 ~ span
(~0, ~1, ..., Xm-1) be the orthogonal projection. It follows from (3.7)
that Pmk-ITm,l’mk-1 = 0 and Tmk = PmkTm,l’mk for k = 1, 2,... (i.e. the
sequences (Pnk) and (Tmk) satisfy (3.5) and (3.6) with nk = mk and
Ek = 0 for all k). Thus the argument used in the proof of Proposition
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3.3 yields

for every finite sequence of scalars (tk). Obviously (1 tkTmk)(03A3 tk~mk) =
03A3k Itkl2. Hence

Thus the subspace [ Tmk] is isomorphic to ~2. Moreover Q defined by
Q(S) = 03A3k S(x0), Xmk)Tmk for S E K(H2) is a projection onto [Tmk]
with ~Q~ ~ 2. Let us regard Q as an operator from [Tm] (= the
isometric image of C203C0/A0) into itself and let P be the adjoint of Q.
Then, by Proposition 3.1(ii), P can be regarded as an operator from
H into itself. Obviously IIP ~ = ~Q~ ~ 2. A direct computation shows
that P is the orthogonal projection of H’ onto [~mk]. To complete the
proof of (P ) in the general case observe that every lacunary sequence
admits a decomposition into a finite number of sequences satisfying
(3.7).

(2) A similar argument gives also the following relative result.
Let (fn) be a sequence in H1. Assume that + 00 &#x3E; supn ~fn~~ ~

infn ~fn~1 &#x3E; 0 and

Then there exists an infinite subsequence (nk) and a 1 ~ K  00 such
that the sequence (fnk) is K-equivalent to the unit vector basis of t2
and the orthogonal projection from H’ onto [fnk] is a bounded

operator.
Our next aim is to give a quantitative generalization of Theorem 3.1

to the case of HP spaces (1  p ~ 2).

THEOREM 3.2: Let 1  p ~ 2 and let K ~ 1. Then there exists an
absolute constant c (independent of K and p) such that if (fn) is a

sequence in HP which is K-equivalent to the unit vector basis of t2,
then there exists a subsequence (nk) such that there exists a projection
P from HP onto [fnk]-the closed linear span of (fnk) with IIP ~ ~ cK2.

PROOF: Let X = [fn]. By the assumption, there exists an isomor-
phism T : ~2 ~ X with ~T~~T-1~ ~ K. Hence, by Proposition 2.3,
there exists a cp E H 1 which satisfies an outer (2.2), (2.3), (2.4).
Let us set ~f~~,q = (1/(203C0) ~203C00 |f(t)|q |~(t)|dt)1/q for f measurable and for
1 S q  00. It follows from (2.2) that there exists in the open unit disc a
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holomorphic function, say g, such that  = epg. Let us set

Since 0 ~~ ~ H1, the limit exists for almost all t and ’P l/p =

1/~-1/p~Hp. Furthermore observe that (2.4) is equivalent to

where y is the absolute constant appearing in Proposition 2.2. On the
other hand, by the logarithmic convexity of the function q ~ ~f~-1/p~qq,
we get

Thus

Now, let H1~ denote the Banach space being the completion of the
trigonometric polynomials 03A3n~0 CnXn in the norm ~·~1,~. It easily follows
from (2.2) and (2.3) that Hq is isometrically isomorphic to H’. The
desired isometry is defined by f - fç for f ~ H1~. Next (3.9) and the
obvious relation

imply that the sequence (fn’P -l/P) belongs to H1~ and in H1~ is

K(2p-2)/(2-p)+103B3(2p-2)/(2-p)-equivalent to the unit vector basis of ~2.

Hence, by Theorem 3.1 which we apply to H1~2013the isometric image
of H1, there exists a subsequence (nk) and a projection

Let us set

To see that P is well defined observe first that if f E HP, then, by the
Hôlder inequality and by (2.3),

Thus, by (3.9), for every f ~ Hp, we have
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Thus P is bounded. Obviously P(Hp) ex and Pif) = f for f E [fnk].
Hence P is a projection. Now, f or p ~ 6 5 we get (remembering that

03B3 ~ 1 and K ~ 1)

If p &#x3E; 6 5, then an inspection of the proof of Proposition 2.1 shows
that there exists an isomorphism T from LP onto a subspace of H1
with ~T~~T-1~ ~ k = 03B311/10,6/5. 2f311!10 (we put in (2.1) and further p2 = 6 5,
p1 = 11 10). Thus, by Theorem 3.1, we infer that every sequence in LP
(p &#x3E; 6 5) (particularly in H’) which is K-equivalent to the unit vector
basis of t2 contains an infinite subsequence whose closed linear span
is the range of a projection from Lp of norm ~ 5k - K. This completes
the proof.

COROLLARY 3.1: There exists an absolute constant c ~ 1 such that, for
1 ::; p ::s; 2, every infinite-dimensional hilbertian subspace of HP contains
an infinite dimensional subspace which is the range of a projection from
Hp of norm ~ c and which is a range of an isomorphism from ~2, say T,
with ~ T~ ~T-1~ ~ c.

PROOF: Combine Theorems 3.1 and 3.2 with the recent result of

Dacunha-Castelle and Krivine [5] from which, in particular, follows
that every infinite-dimensional hilbertian subspace of LP contains, for

every E &#x3E; 0, a subspace which is (1 + ~)2013isomorphic to (2.
Since the argument of Dacunha-Castelle and Krivine is quite

involved, to make the paper self contained we include a proof of a
slightly weaker Proposition 3.4 (which suffices for the proof of

Corollary 3.1). This result and the argument below is due to H. P.
Rosenthall and is published here with his permission.

PROPOSITION 3.4: There exists an absolute constant c such that

every infinite-dimensional hilbertian subspace X of Lp (1 ~ p ~ 2)
contains an infinite dimensional subspace E such that there exists an
isomorphism T : ~2 ~ E with ~T~~T-1~ ~ c.

onto

PROOF: Since LP is isometrically isomorphic to a subspace of L’
(1  p ~ 2), it is enough to consider the case p = 1. For X C L and X

lIt was presented at the Functional Analysis Seminar in Warsaw in October 1973.
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isomorphic to (2 we put
’ 

isomorphisml

positive isometry

Recall that, for the complex LB if Z C L and Z is isomorphic to (2,
then

(This is a result of Grothendieck [12], cf. also Rosenthal [27]. It can be
easily deduced from a result of Maurey [20], cf. the proof of our
Proposition 2.3). Clearly

Now fix X isomorphic to t2 and pick Y C X with dim XI Y  00 so
that I2( Y)  2Í2(X). Replacing, if necessary X by T(X) for an ap-
propriate positive isometry T (depending only on Y but not on

subspaces of Y of finite codimension), one may assume without loss
of generality that

We claim that (3.11) implies

(3.12) for every Z C Y with dim Y/Z  00 there exists a y E Z such
that 

A

Hence, by (3.10),

Hence m 4/V7r and this proves (3.12).
Let (h;) denote the Haar orthonormal basis. It follows from (3.12)
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that one can define inductively a sequence (yn) in Y so that, for all n,

By a result of [2], passing again to a subsequence (if necessary) we may
also assume that (yn) is equivalent to a block basic sequence with respect
to the Haar basis regarded as a basis in L3!2. Now using the Orlicz
inequality (cf. e.g. [25], p. 283), for arbitrary finite sequence of scalars
(tn) we get

where a is an absolute constant depending only on the unconditional
constant of the Haar basis in L3/2 and the constant in the Orlicz

inequality for L3/2. Thus, for every f E span (yn),

Hence by the logarithmic convexity of the function r ~ ~f~rr

Thus the same inequality holds for f ~ [yn]. Therefore [yn] is a

subspace of X with d([yn], ~2) ~ (4/(a03C0))3. This completes the

proof.
It is interesting to compare Corollary 2.1 with the following

fact

PROPOSITION 3.5: Let 1 ~ p  2, let Y be a hilbertian subspace of
HI. Then there exists a non complemented hilbertian subspace X of
Hl 1 which contains Y.

PROOF: Observe first that there exists a non complemented hil-

bertian subspace of Hp (1 ~ p  2). This follows from Proposition
1.2(iii) and from the corresponding fact for LI (1  p  2) (If 1  p ~ 4 3
then, by an observation of Rosenthal [26], p. 52, a result of Rudin [30]
yields the existence of a non-complemented hilbertian subspace. If
4 3  p  2, then the same fact for L’ was very recently observed by
several mathematicians (cf. Bennet, Dor, Goodman, Johnson and
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Newman [9]), finally H contains an uncomplemented hilbertian sub-
space because, by Proposition 2.1, H1 contains H’ isomorphically for
2 &#x3E; p &#x3E; 1.

Now Proposition 3.5 is an immediate consequence of the following
general fact

PROPOSITION 3.6: If a Banach space Z contains a non com-

plemented hilbertian subspace, say E, then every hilbertian subspace
of Z is contained in a non complemented hilbertian subspace.

PROOF: Let Y be a hilbertian subspace of Z. If Y is finite

dimensional, then the desired subspace is Y + E. If Y is uncomple-
mented then there is nothing to prove. In the sequel suppose that Y is
infinite dimensional and that there exists a projection P : Z ~ Y.
Let El denote any subspace of E with dim E/E1  00. Let PE, denote
the restriction of P to El. If PE, were an isomorphic embedding, then
the formula ,SQP would define a projection from Z onto El where Q
is a projection from a hilbertian subspace Y onto its closed subspace
PE1(E1) and S : PE1(E1) ~ E12013the inverse of PE,. Since E is uncom-

plemented in Z, so is El. Hence the restriction of P to no subspace of
E of finite codimension is an isomorphism. Combining this fact with
the standard gliding hump procedure and the block homogeneity of
the unit vector basis in t2 (cf. [2]) we define a sequence (en ) in E
which is equivalent to the unit vector basis of lC2 and satisfies the
condition IIP (en)~  2-n Ilenlifor n = 1, 2, .... This implies that, for some
no, the perturbed sequence (en - P (en))n&#x3E;n0 is equivalent to the unit
vector basis of ~2; hence the space F = [en - P (en)] ~ ker P is hil-

bertian. If F is not complemented in Z, then the desired subspace is
F + Y. If F is complemented in Z and therefore in ker P, then the
standard decomposition method (cf. [22]) yields that ker P is

isomorphic to Z. Thus ker P contains a non complemented hilbertian
subspace, say Fi. The desired subspace can be defined now as FI + Y.
A modification of the above argument gives

PROPOSITION 3.7: Let Z be a separable Banach space such that (i)
there exists a non complemented hilbertian subspace of Z, (ii) every
infinite dimensional hilbertian subspace of Z contains an infinite
dimensional subspace which is complemented in Z. Then

(*) given infinite dimensional complemented hilbertian subspaces of
Z, say Y, and Y2, there exists an isomorphism of Z onto itself which
carries YI onto Y2.
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In particular H’ satisfies (*) for 1 ~ p  2.

PROOF: Let Pj be a projection from Z onto Y; (j = 1, 2). Using (i)
we construct similarly as in the proof of Proposition 3.6 subspaces Fi
of ker Pj which are isomorphic to e2 . By (ii) we may assume without
loss of generality that Fi are complemented in Z and therefore in
ker Pj (j = 1, 2). Now the decomposition technique gives that ker Pj is
isomorphic to Z for j = 1, 2. This allows to construct an isomorphism
of Z onto itself which carries ker P 1 onto ker P2 and P1(Z) onto

P2(Z).

4. Remarks and open problems

We begin this section with a discussion of the behavior of the
Banach Mazur distances d(Lp, Hp), d(Lp, Lp/Hp0), d(Hp, Lp/Hp0) for
p ~ ~ and for p - 1.

Recall that if X and Y are isomorphic Banach spaces, then

d (X, Y) = inf 111 TII ~ T-1~: T : X ~ Y, T - isomorphism}; if X and Y
are not isomorphic, then d (X, Y) = 00. Let p * = p (p - l)-’. Then

Hence the map {f + Hp*0} ~ x*f where xj(g) = 1/(203C0) ~203C00 f(t)g(t)dt for
g E HP is a natural isometric isomorphism from Lp*/Hp*0 onto the
conjugate (Hp)*. Thus, for 1  p  ~,

(4.1) d(LP, Hp) = d(LP*, LP*/HÕ*); d(HP, Lp/Hp0) = d(HP*, Lp*/Hp*0).

The formulae (4.1) allow us to restrict our attention to the case where

p - 1. In the sequel we assume that 1 ~ p ~ 2.
The results enlisted in section 1 give upper estimates for the

distances in question. We have

PROPOSITION 4.1: There exists an absolute constant K such that

PROOF: By Proposition 1.1(iii) and 1.2(iii), d(Lp, Hp) ~ K(p/p - 1)
and d(Lp*, Hp*) ~ Kp* = Kp/(p - 1). Hence, by (4.1),
d (Lp, Lp/Hp0) ~ Kp/(p - 1). Let Hp = f E Lp : f E Hp and let V denote
the restriction to FIP of the quotient map Lp ~ Lp/Hp0. Clearly
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the proof observe that Hp is isometrically isomorphic to Hp via the
map f ~ f* where f*(t) = f(-t).

PROBLEM 4.1: Does there exist an absolute constant k &#x3E; 0 such that,
for 1  p  2,

We are able to prove only

PROPOSITION 4.2: There exists an absolute constant k &#x3E; 0 such that

PROOF: (a) is an immediate consequence of the following stronger
result.

(a’) There exists an absolute constant k &#x3E; 0 such that if X is a

subspace of Hp (1  p ::; 2), if X contains a subspace isomorphic to (2,
and if X ~ Lp ~ X is a factorization of identity (i.e. TS = the

identity on X), then ~T~~S~ ~ k p/(p - 1).

PROOF Applying Corollary 3.1: we can choose a subspace E C X an
isomorphism U : E ~ e 2and a projection P : X ~ E so that
~U~~U-1~ ~ c and ~P~ ~ c where c is an absolute constant. Let

S1 = SU-1 and T1 = UPT. Then ~2 ~ L, ~ e2 is a factorization of
identity with ~S1~~T1~ ~ ~S~~T~. c2. Now the desired conclusion fol-
lows from a result of Gordon, Lewis and Retherford [11], Remark (1)
to Corollary 5.7 which asserts that there exists an absolute constant ki 
such that if ~2 ~ Lp ~ ~2 is any factorization of identity, then
~T1~~S1~ ~ k1 p/(p - 1) (1  p ~ 2). This completes the proof of (a’).
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(b) is an immediate consequence of a slightly stronger result.
(b’) There exists an absolute constant k &#x3E; 0 such that if U is an

isomorphism from Lp/Hp0 onto a subspace X of HP (1  p :::; 2) then

~U~~U-1~ ~ k p/(p - 1).

PROOF: Let Xp denote the closed linear subspace of LP (1  p ~ 2)
generated by the sequence (~-2k). Let Ip : Lp ~ L1 1 and jp : Lp / Hp0 ~
L1/Hp0 denote natural embeddings (i.e. jp({f + Hp0}) = {f + H10}) and let
qp : Lp ~ Lp / H10 denote the quotient map. Clearly ~qp~ ~ lqp Il:::; 1 and, we have
jpqp = q llp. A direct computation shows that ~f~4 ~ 21/4~f~2 for f ~ X2.
Thus the logarithmic convexity of the function p ~ IIfllp yields

It follows from the above inequality and from the proof of Pro-
position 2.4 that the operator Vp - the restriction of qp to Xp is

invertible and V-1p~ ~ c where c is an absolute constant independent
of p. Since Xp is isomorphic to ~2, so is UVp(Xp). Hence, by
Corollary 3.1, there exist a subspace E of UVp(Xp) an isomorphism
T : E ~ ~2 and a projection P : X ~ E with ~T~~T-1~ ~ ci and
~P~ ~ c1 where ci is an absolute constant. Now we consider the

factorization of identity.

By a result of [11], Remark (1) to Corollary 5.7, there exists an absolute
constant k &#x3E; 0 such that

Thus ~U~~U-1~ ~ k (p/p-1) for k = k1c-21c-1. This completes the
proof of (b’).
To prove (c), in view of the fact that, for 1  p ~ 2 HP C Lp is

isometrically isomorphic to a subspace of L (cf. e.g. [27], p. 354), it is
enough to show

(c’) Let dp = inf {d(Lp/Hp0, X) : X ~L1} (1  p ~ 2). Then limp=1 dp =
00.

PROOF of (c’): Fix E &#x3E; 0 and a finite-dimensional subspace B of
L 1/Hô. Since the continuous 203C0-periodic functions are dense in LI, the
standard perturbation argument (cf. e.g. [2]) yields the existence of a
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(dim B )-dimensional subspace G of C203C0 with G ~ H10 = 101 such that

(G + H’ 0 is regarded as a subspace of L). Let us put

and let Gp stand for G equipped with the norm ·p. We claim that

To see (4.2) observe first that

because Ao is dense in each Hg. Next note that, for every g E G and
h E Ao, the function p ~ IIg + h IIp is (finite) continuous and non decreas-
ing. Thus

which yield (4.2).
Let S1G = {g ~G : g1 = 1}. Since G is finite-dimensional, S1G is

compact. Hence Dini’s Theorem combined with (4.2) implies that

gp ~ g1 = 1 uniformly on S1G as p - 1. Therefore there exists a
po = po(B, E) &#x3E; 1 such that

Equivalently the formal identity map jp : Gp ~ G1 is an isomorphism with

~jp~~j-1p~ ~ (1 + E)I/2. Clearly Gp is isometrically isomorphic to the sub-
space (G + Hp)/Hp of LPIHô. Using this fact for p = 1 we get

Now suppose to the contrary that there exist a sequence (p(n))
with limn p(n) = 1, a constant À &#x3E; 0 and a sequence (Xn) of subspaces
of L 1 such that

Then (4.3) would imply that for every finite-dimensional subspace B
of L1/H10 there exists a subspace B1 in LI with d(B, BI)  03BB. Hence, by
[16], Proposition 7.1, L1/H10 would be isomorphic to a subspace of
some L1(03BC)-space which contradicts [24]. This completes the proof of
(c’) and therefore of Proposition 4.2.
There are several problems related to Proposition 2.1.



285

PROBLEM 4.2: Does there exist an absolute constant À 2:: 1 such

that, for every p and q with 1 s q  p  2, there exists a subspace Xp,q
of Hq such that d(H’, X,,q) Ik ? In particular is HI isometrically
isomorphic to a subspace of Hq ?
The recent result of Dacunha-Castelle and Krivine [5] yields that, for

every p with 1 s p  00 and for every À &#x3E; 1, there exists a subspace X
of Hp such that d(X, ~2)  À. In fact a subspace X with the above
property can be defined as the closed linear span of a sequence
(03A3(m+1)kj=mk+1 Xnj)m=1,2... where k and the "lacunary" sequence (nj) depend on
p and q. We do not know, however, whether ~2 is isometrically
isomorphic to a subspace of HI for any p ~ 2? On the other hand
there is no subspace of Hp which is isometrically isomorphic to the
2-dimensional space e2 (p ~ 2). Otherwise there would exist in HP
functions fi 1 and f2 of norm one such that ~f1 + f211P + ~f1 - f2llp =

2(~f1~p + ~f2~p). Then (cf. e.g. [22]) f1 · f2 = 0. Thus the analyticity of the
f;’s would imply that either fi 1 or f2 is zero, a contradiction. This

remark answers negatively a question of Boas [4] who asked whether
Hp is isometrically isomorphic to LP for some p ~ 2.

Finally we would like to mention the well known open problems
concerning the existence of unconditional structures in H1.

PROBLEM 4.3: (a) Does H have an unconditional basis?

(b) Is H 1 isomorphic to a subspace of a Banach space with an
unconditional basis? (c) Does H1 have a local unconditional structure
either in the sense of [6] or of [10]?

Let us mention that the basis for Hi which has been constructed by
Billard [3] is conditional.
Let us recall briefly Billard’s construction. Let HR denote the real

Banach space of functions f E LR such that Yffl E LR equipped with
the norm It is easy to see that the com-

plexification of HR is isomorphic to Hl. Therefore every basis for HR
induces a basis for H1. Billard [3] has proved that the classical Haar
system (hk)0~k~ is a basis for HR. (In our convention the hk’s are
defined on the whole real line, are 203C0-periodic, and restricted to

[0, 21r) consist the Haar orthonormal system i.e. ho m 1 and for j = 0,
1,..., r = 0, 1,..., 2j - 1,

where 0394(j + 1, k) = {t E R : 203C0k2-j-1  t  2-u(k + 1)2-j-’ and IA
denotes the characteristic function of a set A C R.)

PROPOSITION: The sequence (hk)0~k~ is a conditional basis for HR.
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PROOF: Let us set go = 2h1, g*0 = 2h,,

Since g*n1 ~ ~g*n~1 ~ n/4 for all n (an easy computation), to complete
the proof it suflices to show that supn gn1  00. Observe that, for all

n,

Thus Mi =2 for all n. Therefore our task is to show that

Supn ~X(gn~1  00.

We have almost everywhere (cf. [33], [7])

Since

we infer that

for some constant Ci independent of n. On the other hand, evaluating
the second integral, we get

Since

we infer that ~X(gn)~1 ~ c1 + c2 for all n. This completes the proof.
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