Locally convex spaces for which Λ(E)=Λ[E] and the Dvoretsky-Rogers theorem
Compositio Mathematica, Volume 35 (1977) no. 2, p. 139-145
@article{CM_1977__35_2_139_0,
     author = {De Grande-De Kimpe, Nicole},
     title = {Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem},
     journal = {Compositio Mathematica},
     publisher = {Noordhoff International Publishing},
     volume = {35},
     number = {2},
     year = {1977},
     pages = {139-145},
     zbl = {0359.46010},
     language = {en},
     url = {http://www.numdam.org/item/CM_1977__35_2_139_0}
}
de Grande-de Kimpe, N. Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem. Compositio Mathematica, Volume 35 (1977) no. 2, pp. 139-145. http://www.numdam.org/item/CM_1977__35_2_139_0/

[1] N. De Grande-De Kimpe: Generalized sequence spaces. Bull. Soc. Math. Belg. XXIII (1971) 123-166. | MR 310590 | Zbl 0232.46017

[2] N. De Grange-De Kimpe: Operator theory for bornological spaces. Bull. Soc. Math. Belg. XXVI, (1974) 3-23. | MR 477674 | Zbl 0298.47015

[3] N. De Grange-De Kimpe: Criteria for nuclearity in terms of generalized sequence spaces. To appear in Archiv der Mathematik. | Zbl 0359.46011

[4] Ed. Dubinsky and M.S. Ramanujan: Inclusion theorems for absolutely A-summing maps. Math. Ann. 192 (1971) 177-190. | MR 293294 | Zbl 0202.13202

[5] A. Grothendieck: Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretsky-Rogers. Boletin Soc. Math. Sao Paulo, 8 (1956). | MR 94683 | Zbl 01696399

[6] G. Kothe: Topologische lineare Räume. Springer Verlag (1960). | MR 130551 | Zbl 0093.11901

[7] A. Pietsch: Verallgemeinerte volkommene Folgenräume. Akademie Verlag (1962). | MR 157216 | Zbl 0105.30701

[8] A. Pietsch: Nukleare lokalkonvexe Räume. Akademie Verlag (1965). | MR 181888 | Zbl 0184.14602

[9] A. Pietsch: Absolut p-summierende Abbildungen in normierte Räume. Studia Math. 28 (1967) 333-353. | MR 216328 | Zbl 0156.37903

[10] R.C. Rosier: Dual spaces of certain vector sequence spaces. Pacific J. Math. 46(2) (1973) 487-501. | MR 328544 | Zbl 0263.46009

[11] R.C. Rosier: Vector sequence spaces and the Dvoretsky-Rogers theorem. (To appear).