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SOME INTERSECTION AND GENERATION PROPERTIES
OF CONVEX SETS

Robert E. Jamison*

Introduction

In this paper it is shown that in a real vector space of at most

countable dimension any convex set whose complement is also con-
vex is the convex hull of a countable set. This result is valid over any
ordered field whose order completion is first countable in the order
topology. In an abstract setting of convexity it is also shown that the
above generation property implies that any family of convex sets with
empty intersection has a countable subfamily with empty intersection.

In a 1956 paper [10, p. 59], V. L. Klee proved the following
intersection theorem for convex sets:

KLEE’S THEOREM: Let V be a real vector space of countable
dimension. If F is a family of convex sets in V with empty in-

tersection, then some countable subfamily of JF has empty in-

tersection.

Later in a lecture series [12] he observed that the proof in [10] was
applicable to vector spaces over any ordered field with a countable
dense subset. One objective of this paper is to extend Klee’s result to
the class of completely sequential ordered fields: every nonvoid

subset contains an increasing cofinal sequence. This is the largest
class of fields for which Klee’s theorem is valid. It may not be a priori
obvious that completely sequential is a strictly weaker requirement
than order separable. However, we shall show that the real-valued
function field generated by the functions x ~ xr, r a real number, is
* The author is grateful to the Department of Mathematical Sciences of Clemson
University for their support during the preparation of this paper.
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completely sequential but not order separable. (The "eventual" order-
ing is used here: f - g iff f (x)  g(x) for all sufficiently large x.)
Another aim of this paper is to prove the following relative of

Klee’s theorem:

(A) THEOREM: Let V be a vector space of countable dimension
over a completely sequential ordered field. If H is a convex set in V
whose complement V -- H is also convex, then H is the convex hull of
a countable set.

In fact, as we shall show, this result is formally stronger than the
extension of Klee’s theorem. This will be demonstrated in the setting
of general convexity developed in [6].
As Klee’s result can be interpreted as a countable version of

Helly’s celebrated theorem [5] on intersections of convex sets and as
Theorem A is a countable analogue of Carathéodory’s celebrated
result on formation of convex hulls [1], the abstract connection

between these two results can be regarded as a contribution to the

understanding of the interplay between Helly and Carathéodory pro-
perties of abstract spaces. A somewhat old but still valuable survey of
results in this direction is [2]. In the course of the present develop-
ment, we shall also prove a general Helly type theorem for compact
(in a combinatorial sense) families of convex sets. Other intersection
theorems related to this and to Klee’s theorem above are discussed in

[11].

The main result

In this paper F will denote a totally ordered field. (For a discussion
of ordered fields and some interesting examples, see [4, Chapter 13].)
If K is a subset of a vector space V over F, then K is convex if and

only if 
03BBx + (1 - 03BB) y ~ K

for every x and y in K and each scalar À with 0  03BB  1. If both K

and its complement V --- K are convex, then K is called a hemispace.
(The open and the closed halfspaces determined by linear functionals
are hemispaces. But there are many others.)
A totally ordered set T will be called completely sequential if every

subset of T has a countable increasing cofinal subset and a countable
decreasing cofinal subset. Let us note in passing that if T is com-

pletely sequential, then so is the order completion of T. In fact, T is
completely sequential iff the order completion of T is first countable
under the order topology. For an ordered field to be completely
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sequential it is sufncient that every bounded set of positive numbers
have a countable increasing cofinal subset. (It is surely necessary but
not sufficient that 0 be the limit of a sequence of positive elements.)
Note that if the ordered set T has a countable order dense subset,
then T is completely sequential.

MAIN THEOREM: Let V be a vector space over the ordered field F.
Then the following are equivalent :

(i) The dimension of V over F is countable and F is completely
sequential.

(ii) Every hemispace in V is the convex hull of a countable set.
(iii) Every family of convex sets in V with empty intersection

contains a countable subfamily with empty intersection.

We first show that (i) implies (ii). From the general theory de-
veloped next, it will follow that (ii) implies (iii). As it is quite easy to
see that (iii) implies (i), this will complete the proof.
One might wish to note that the Main Theorem is a result phrased

in terms of the countably infinite cardinal. An analogous result is true
for any infinite cardinal. In fact, the proof presented here requires
only slight, but judicious, modification to be applicable to the general
case. However, the presentation is restricted to the countable case for
conceptual ease and concreteness.

Hemispaces as convex hulls of countable sets

We begin with a proof of Theorem A ((i) implies (ii) of the Main
Theorem). For this result it will be useful to know that if two linear

functionals .0 and Ji are bounded (either from above or below) on a
nonempty hemispace H, then 0 and tp are linearly dependent. To see
this, first note that by multiplying by - 1 if need be, one may assume
that 0 and Q are bounded below by numbers a and 03B2, respectively. If
~ and Ji are linearly independent, there is a point p in V such that
~ (p ) = -1 and 03C8(p ) = 1. Let x be any point of H. Choose a scalar À
larger than both ~ (x ) - 03B1 and I/J(x) - (3; then set v = x + 03BBp and

w = je - Àp. Then ((v)  a and I/J(w)  03B2, so v and w are not in H. As
x is the average of v and w, this contradicts the assumed convexity of
V --- H.

PROOF OF THEOREM A: Proceeding by induction, we shall first

establish the result when V is finite dimensional. Let H be any

nonempty hemispace in V. (The result is trivial if H = 0.) If dim V =
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1, then V may be identified with F. Since F is completely sequential,
there is a countable subset C of H which is both cofinal increasing
and cofinal decreasing. Evidently, H = conv (C).

Now suppose dim V = n &#x3E; 1. Since the linear functionals bounded

on H are all linearly dependent, there is a linear functional ~ that is
not bounded on H. Thus for each À in F, the set H03BB =
lx e H: 0(x) =,kl is nonempty. Since F is completely sequential,
there is a countable subset I of F that is both cofinal increasing and
cofinal decreasing. For any subset S of F with I C S, let

Our first goal is to show that H = C(S) for some countable subset S
of F.

To this end, for each subset S of F, let

If S is countable and I is included in S, then R(S) will be called a
residual subset of F. We shall now show in a series of steps that 0 is
residual.

(i) Each residual set is order convex in F.

Check. For a  (3  y with a and y in the residual set R(S), let x and z
be points in H - C(S) with 0(x) = a and ~(z) = y. For some point y
on the segment from x to z, one must have 0(y) = 03B2. Since the

complement of H is convex, either the ray from y through x or the
ray from y through z must belong to H. Suppose the former obtains.
Since ~(x )  ~(y) and I contains a decreasing cofinal subset of F,
there is a point p on the ray from y through x with ~(p) = À for some
À in I. As I C S, this implies that p E C(S). If y were in C(S), the
convexity of C(S) would force C(S) to contain x. The choice of x
precludes this. Thus y E H --- C(S), so (3 = ~(y) is in R(S). The other
alternative above is handled similarly. #

(ii) The countable intersection of residual sets contains a residual
set.

Check. If R(Sn) n = 1, 2, ... is a countable collection of residual sets,
then S = ~ ~n=1 Sn is countable and contains I since each Sn contains
I. Thus R(S) is residual, and it is easily checked that R(S) Ç R ( Sn ) for
all n. yi
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(iii) If F is a decreasing chain of order convex subsets of F, then
there is a countable subfamily W of F with n % = n F.

Check. For each set A in F, define

and

Now let

and

Choose a cofinal decreasing sequence v1 &#x3E; v2 &#x3E; ... in U and a cofinal

increasing sequence 03BB1  À2:5 ... in L. For each n, select sets An and
Bn in F such that un E U(An) and 03BBn E L(Bn). Let % be the (obviously
countable) collection of the An’s and Bn’s so chosen. Now if 03B2 is a

number in F that is not in ~ F, then 03B2 ~ C for some set C in 3i.

Since C is order convex, either j3 E U(C) or (3 E L(C). In the first
case, 03B2 is in U, so 03C5n  03B2 for some integer n. Whence 03B2 belongs to
U(An), so 03B2 cannot belong to An. Consequently 8 is not innw. The
second case is handled similarly. It follows that ~ G = ~ F. yi

(iv) There is a minimal residual set.

Check. Assertions (i), (ii) and (iii) imply that the intersection of any
decreasing chain of residual sets contains a residual set. Zorn’s lemma
therefore applies. # 

(v) A minimal residual set is empty.

Check. If R(S) is a nonempty residual set, let 03BB be any number in

R(S), and take S’ = S U À. Then S’ still includes I and is countable.

Obviously, 03BB~ R(S’), but R(S’) ç R(S). Thus R(S’) is a residual set

properly contained in R(S). yi

As a result of (iv) and (v) above, the empty set is residual. It

follows that there is a countable subset S of F with I C S such that

C(S) = H. Now for each À in F, H, is a hemispace in the (n - 1)-
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dimensional flat {x ~ V: ~(x)=03BB}. The induction hypothesis then
guarantees that H03BB is the convex hull of some countable C03BB. The set
C = U {C03BB : 03BB e S} is countable and for each À in S, one obtains

H03BB C conv (C). Thus H = C(S) = conv (C). This completes the in-

duction and proves the theorem when V is finite dimensional.

Now if the dimension of V is countably infinite, V can be ex-

pressed as the countable union of finite dimensional subspaces Ln. If
H is a hemispace in V, then H f1 Ln is a hemispace in Ln with
H ~ Ln = conv (Cn). Letting C = U :=1 Cn, one can easily see that

H = conv (C). Moreover as the countable union of countable sets, C
is countable. D

An example

We shall give here an example of a totally ordered field which is
completely sequential but does not contain a countable order dense
subset. This example is based on the hyperreal function fields in-

vestigated by L. Gilman and M. Jerison [4, pp. 171-189]. Their

terminology is employed below. Let R denote the field of real

numbers and set X = {r ~ R : r &#x3E; 1}. Choose a free maximal ideal M
[4, p. 54] in the ring C(X) of continuous real-valued functions on X.
The quotient ring C(X)IM is a nonarchimedean ordered field K [4, p.
70]. In K, let F be the subfield generated by the quotient map images
of the functions x ~ xr where r is any real number. The ring
generated in F by the functions x" can be identified with the "pseudo-
polynomials"-functions of the form p(x) = ~i=1n c(i)xr(i) where n is a
positive integer, c(i) E R, and the r(i) are distinct real numbers. The
largest r(i) such that the corresponding c(i) is nonzero, will be called
the degree of p(x) and the corresponding c(i) the leading coefficient.
Any element k of F can be represented in the form À = p(x)lq(x)
where p and q are pseudopolynomials and the leading coefflcient of q
is 1. Thus 03BB is positive only when the leading coefficient of p-which
will also be called the leading coefficient of 03BB- is positive. We take
the degree of À to equal the degree of p minus the degree of q.
We shall now outline an argument that F is completely sequential

but possesses no countable dense subset. The latter is easy to see.
Note that for any real numbers r  s, if p E F has degree r and o- e F
is positive of degree s, then p  u. Hence the open order intervals of

the form

are mutually disjoint and uncountable in number.
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To show that F is completely sequential, we shall assume the

opposite and derive an absurdity. Suppose that S is a bounded set of
nonnegative elements of F with no increasing cofinal sequence. For
each countable ordinal q, we shall construct an element Àll of S and a
real number dn such that whenever y precedes q, we have (i) 03BBy  An
and (ii) d, - d, with strict inequality if y is a nonlimit ordinal. (For a
discussion of ordinals, see [8, p. 266], [4, p. 74].)

Let Ào = 0 and take do to be any real number such that deg cr  do
for all 03C3 in S. (Such exists since (x r) r E R is cofinal in F and S is

bounded.)
Now suppose 03BBy and dy have been chosen for all ordinals y less

than a particular countable ordinal q. If q has an immediate predeces-
sor 03B2, let

and consider the set D of degrees of elements in T. Define d." = sup D.
If dn. is not in D, select a sequence (Tn) from T such that

Such a sequence is cofinal in T, whence (T + 03BB03B2) is a cofinal sequence
in S. As this contradicts the assumption on S, there must be an
element of T with maximum degree. Let C be the set of all leading
coefficients of elements of T which have degree d",. Set c = sup C. If c
is not in C (or is infinite), select a sequence of elements in T of
maximal degree whose leading coefficients have c as their supremum.
This sequence is cofinal in T, again a contradiction. Hence c is finite
and in T so there is some element 1£ of degree dn, with c as leading
coefficient.

Taking 03BBn = IL + 03BB03B2, we clearly get 03BB~ &#x3E; 03BB03B2 as required in condition
(i). Now note that if

then also

From the choice of u, it follows that every element of T’ has degree
strictly less than d~. Inductive condition (ii) can be inferred from this.

If q is a (countable) limit ordinal, the construction is easier. Let

The countable set {03BB~ : y  ~} cannot be cofinal in S by hypothesis on
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S, so there is a 03BB~ in S such that 03BB~ &#x3E; 03BBy for all y preceding q. Both
inductive conditions (i) and (ii) are easily verified in this case.
Now for each countable ordinal q, we have an open interval of real

numbers:

(Here q + 1 denotes the successor of q.) By inductive property (ii),
these are nonempty and disjoint. But this is impossible since there are
uncountably many countable ordinals and every collection of disjoint
open sets in R is countable. Hence F must be completely sequential.

Two Helly-type theorems

In this section we shall establish the second implication in the Main
Theorem. This will be done in the general context of alignments, as
developed in [6]. Only a brief review of the essentials required for the
development will be given here. For more details and examples, see
[6].

If X is any set, an alignment on X is a family L of subsets of X
(which will be called convex subsets of X) such that

(Al) 0 and X are convex,
(A2) the arbitrary intersection of convex sets is convex, and
(A3) the union of a chain of convex sets (that is, a family of

convex sets totally ordered by inclusion) is convex.

The pair (X, L) is an aligned space. An alignment Y on X determines
a convex hull operator on subsets of X

This operator can be shown to satisfy the useful finitary property:

(*) : E is a finite subset of S}.

A direct proof of this may be given using transfinite induction [6, p.
5].
An alignment on X is, of course, a subset of the power set Pow (X)

of X. By identifying each subset of X with its characteristic function,
Pow (X) may be identified with the compact Hausdorff product of
discrete two point spaces fO, 11, indexed by X. The resulting topology
on Pow (X) will be called the inclusion-exclusion topology. Families
of the form f A C X : I C A and E rl A = ~} where I and E are ar-
bitrary finite subsets of X, form a base of open (and closed) sets for
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this topology. The finitary property implies that any alignment Y on X
is actually a closed subset of P ow (X) under this topology. For if S is
a subset of X that is not convex, there is a point p in L(S) that is not
in S. By (*), there is a finite subset I of S with p in L(I). The family
f A C X : I C A and p e A} is then an open family in Pow (X) contain-
ing S but disjoint from 5£.

WARNING: The inclusion-exclusion topology on Pow (X) in no way
reflects any topological or other structure X may possess. It is purely
combinatorial in nature, depending only on the cardinality of X.

A set H in an aligned space (X, L) is a hemispace provided H and
its complement X - H are both convex. Since the alignment Y is
closed in Pow (X) and the complementation map A-X - A is a

homeomorphism of Pow (X) onto itself, the family 5£’ of sets whose
complements are convex is also closed. Thus the family of he-

mispaces in X, as the intersection of the closed families 5£ and 5£’, is
closed.

Hemispaces provide a natural notion to be used in describing
separation properties of an aligned space. We require only one such
property here (see [6, p. 24]).

SEPARATION Axiom S3: Given any convex set K and point pe K,
there is a hemispace H such that K C H and p ~ H.

The ordinary alignment of convex sets in a vector space over a
totally ordered field satisfies this axiom. To see this, take H to be any
maximal convex set containing K but missing p. It is not hard to

check that such an H must have a convex complement.
An alignment Y is said to have Helly number h provided

(t) for any finite family 3i of L-convex sets with empty intersection,
some subfamily of at most h sets from 3i has empty intersection.

This is a compactness type property. In fact, we shall shortly prove
that the "finite" above can be replaced by "compact" in the sense of
the inclusion-exclusion topology on Pow (X). Helly’s theorem [5]
asserts that n + 1 is the Helly number for the ordinary convex sets in
an n-dimensional real vector space. A standard proof of this, such as

given in [3, p. 33], is easily adapted for vector spaces over arbitrary
ordered fields. An aligned space (X, L) has u-finite Helly type if X is
the union of a countable family of subsets Yn such that, for each n,
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the relative alignment

has a finite Helly number. Thus any vector space of countable

dimension over an ordered field has 03C3-finite Helly type.
The next Proposition will be used in the proof that (ii) implies (iii)

from the Main Theorem. It also is of independent interest.

(B) PROPOSITION: Let (XY) be an aligned space with Helly
number h. Suppose Je is a family of L-convex sets that is compact in
the inclusion-exclusion topology on Pow (X). If the sets in K have
empty intersection, then some subfamily of at most h sets from K has

empty intersection.

PROOF: First we show by a Zorn’s Lemma argument that among
the closed subfamilies of K which have empty intersection, there is a
minimal one. For any decreasing chain (Ky) of closed subfamilies of
Je, each with empty intersection, let

As an intersection of closed families in Pow (X), .Ji is closed. Now

consider any point p in X. For each y, the family

is nonempty since the sets in Ky have void intersection and hence
some set in Ky excludes p. Furthermore, as Z,(p) is just the in-

tersection of Ky with the basic closed family {S ~ X :p ~ S}, each
X-y(p) is closed and the collection (Ky(p ) is a descending chain. Since
Pow (X) is compact, this chain must have a nonvoid intersection.

Any set in this intersection belongs to .;U but misses p. Thus the

intersection of the sets in « is empty. One can now conclude from
Zorn’s lemma that there is a minimal closed subfamily of 3t with
empty intersection.
To prove the Proposition it now suffices to show that a minimal

closed family of 0-convex sets whose intersection is empty must be
finite. Proceeding by reductio ad absurdum, assume that « is such a
family but that « contains infinitely many sets. Being both compact
and infinite, JK must contain a set A which is an accumulation point
of the other sets in « (with respect to the inclusion-exclusion

topology). Working toward a contradiction, we inductively choose
h + 1 points from A as follows:
Let xo be any point in A. Having chosen xo, xi, ..., Xn from A,
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consider the closed f amilies

defined for each i from 0 to n. Now define

Clearly 16 is a closed subfamily of .;U. We argue that it is properly
included in .;U. In Pow (X),

is an open family containing A but no set from any Ali, Thus
C f1 ôm = {A}. But since A is not isolated relative to Al, there must be
infinitely many sets in « fl ô/1. Thus C is not all of Al. Therefore, the
sets in % must have nonempty intersection, by the minimality of Al.
Let xn+1 be any point in this intersection. Then x,,,, e A since A E C.
Furthermore, this choice also forces xn+, to belong to every set in Ali
for each i  n + 1.

With xo, xi, ..., xh selected as above, define for each i from 0 to h

an i%-convex set:

Clearly any h of these h + 1 5£-convex sets have nonempty in-

tersection. However, we shall show that all h + 1 of these sets have

empty intersection, contradicting the hypothesis that h is a Helly
number for 5£.

Let I = L0 ~ L1 ~ . . . n Lh. If M is in M, we aver that Li C M for
some i and hence that I C M. In f act, if M contains all the points xi,
then M contains all the sets Li and hence I. If M misses some x;, let j
be the least index such that xj ~ M. Then M belongs to .Âlj. As
observed in the construction of the xi’s, for each i &#x3E; j, the point xi
must lie in each set in .Âlj. Thus xi E M when i &#x3E; j. However, for i  j,
we have xi E M by the minimal choice of j. Hence M contains all of
the points xi except for xi and hence includes the corresponding
convex hull Li. Consequently I C M for each M in .Âl. Thus I is

contained in the intersection of all the sets in M, which was assumed
to be empty. This leads to the contradiction stated above and thereby
completes the proof. D

One might wonder if, for any alignment, a closed family of convex
sets with empty intersection must always contain a finite subfamily
with empty intersection. Were this so, the above Proposition could be
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deduced as an easy corollary. However, as shown in the examples
below, this need not happen in the absence of a finite Helly number.

(C) EXAMPLE: Let X be an infinite set with the free alignment: all
subsets of X are convex. Let F be the family of all subsets of the
form X - p where p is any point in X. Any net (not eventually
constant) of sets in F converges to X. Thus the family F U {X} is
closed and has empty intersection, but no finite subfamily has empty
intersection.

(D) EXAMPLE: The preceding example can be embedded in a vector
space. Let V be an infinite dimensional real vector space and let X be

an infinite linearly independent subset of V. For each p in X, let

Cp = conv (X - p) and set C = conv (X). The family 3t of all these
convex sets has empty intersection, but any finite number always
have a point in common. Furthermore, the family 3t is closed in

Pow (V). (For any convergent net from 3t, look at the corresponding
net of extreme points. Note that ext (Cp ) = X - - p, and that a limit of
convex sets must be convex.)

In [9] V. L. Klee gave a result for open convex sets in Euclidean

space which is similar to Proposition B. His notion of compactness,
however, seems to depend on the Hausdorff metric. In an earlier

paper [7] Karlin and Shapley proved a related result for hemispheres
in spheres. (Their result is phrased in terms of coverings.) Both of
these results can be deduced from Proposition B. We shall not do so
here since the original proofs are quite easy and it would lead us too
far astray. For a survey of other related results, see [11].

(E) THEOREM: Suppose that (X, L) is an aligned space of u-finite
Helly type, and (X, Y) satisfies separation axiom S3. If every he-
mispace in X is the convex hull of a countable set of points, then any
family of convex sets with empty intersection has a countable sub-
family with empty intersection.

PROOF: Let 3i be a family of convex subsets of X with empty
intersection. For each point x of X, let Cx be a set in 3i with xE5 Cx.
By axiom S3 a hemispace Hx may be chosen such that Cx C Hx and
xe Hr Let W denote the collection of hemispaces so chosen as x
ranges over X. To prove the theorem it suffices to show that some

countable subfamily of W has void intersection. To this end, define 3t
to be the closure of W in P ow (X) with respect to the inclusion-
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exclusion topology. Note that since W is included in the family of all

hemispaces and, as observed earlier, this family is closed, it follows
that each set in 3t is a hemispace.
Now the collection llt of hemispaces, as a closed subset of

Pow (X), is a compact Hausdorff space under the inclusion-exclusion

topology. It is also first countable. To see this, consider any he-

mispace H. By hypothesis, there are countable sets S = (s1, s2, * *1
and T = {t1, t2, ...} such that H = Y(S) and X - H = 2(T). For each
j, the family

is a compact neighborhood of H relative to llt. If H’ is any set in the

intersection of this sequence of compact families, then H’ is a

hemispace including S but missing T. Thus H’ ~ .2(S) = H since H’
is convex, and X ~ H’ ~ L( T ) = X ~ H, since X - H’ is convex.

Consequently H’ = H, so H is the only point in the intersection of the
decreasing sequence of compact neighborhoods Nj It follows that llt

is first countable. The information of importance to be gleaned from
this is that each set in 3t is the limit of a sequence of sets in G.

Now write X as a countable union of subsets Yn, where for each n
the relative alignment .21 Yn has a finite Helly number. For each n,

is a family of relatively convex sets in Yn with empty intersection.
Since intersection is continuous on Pow (X) under the inclusion-
exclusion topology [6, p. 43], K|Yn is also closed in Pow ( Yn ). Since
the Helly number of cPl Yn is finite, Proposition B implies that K|Yn
contains a finite subfamily with void intersection. Let the sets in this
finite subfamily of K| Yn be the restrictions to Yn of the sets in a finite
subfamily Kn of K. If A belongs to Kn for some n, we may select a
sequence of sets (Ai ) from W which converge to A. Let 16 be the
collection of all sets in W which occur in some such chosen sequence.
As a countable union of sequences, (6 is countable.
We aver that the intersection of the sets in 16 is empty. For if x is

any point in X, then x lies in some Yn. Hence there is a set A in Kn
with x ~ A. Since the chosen sequence (Ai ) converges to A, for some
i, x must be excluded from Ai. Thus x cannot belong to the in-

tersection of all the sets in C. Hence (6 is a countable subfamily of G
with empty intersection. 0

As is inherent in the Main Theorem, the converse of Theorem E is
valid in the case the space X is a vector space over an ordered field
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and Y is the ordinary alignment. In general, however, the converse is
not true. For example, take the space to be the closed unit disc D in
the Euclidean plane with the alignment of ordinary convex sets. Then
D is certainly a hemispace in itself, but D is not the convex hull of a
countable set since D has uncountably many extreme-points.
However, since Klee’s theorem applies to any family of convex sets
in the plane, it certainly applies to the convex sets contained in D.
Consequently, in the general setting, the generating property con-
cluded in Theorem A is strictly stronger than the intersection pro-
perty expressed in Klee’s theorem.

Conclusion of the proof of the main theorem

From Theorem A it follows that (i) implies (ii) in the Main

Theorem. That (ii) implies (iii) is a special case of Theorem E. Now in
any vector space of uncountable dimension, one can select per

definitionem an uncountable linearly independent set X. One sees at
once that the family of convex sets associated with this X as in

Example D has empty intersection but every countable subfamily has
nonvoid intersection. Hence if (iii) obtains, the vector space V must
be of countable dimension. Furthermore, if (iii) obtains in V, then (iii)
obtains in any linear subspace of V. Since a one-dimensional sub-

space can be identified with the underlying field F, it follows that (iii)
obtains in F. From this it follows easily that F is completely sequen-
tial. This completes the proof of the Main Theorem.

Note: The referee has pointed out that an updated Russian translation
of [2] is available: Danzer, Grünbaum, Klee, and Zalgaller, Helly’s
theorem and its applications (Russian). "Mir" Publishers, Moscow,
1968.
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