A Banach space with a symmetric basis which contains no p or c 0 , and all its symmetric basic sequences are equivalent
Compositio Mathematica, Volume 35 (1977) no. 2, pp. 189-195.
@article{CM_1977__35_2_189_0,
     author = {Altshuler, Z.},
     title = {A {Banach} space with a symmetric basis which contains no $\ell _ p$ or $c_0$, and all its symmetric basic sequences are equivalent},
     journal = {Compositio Mathematica},
     pages = {189--195},
     publisher = {Noordhoff International Publishing},
     volume = {35},
     number = {2},
     year = {1977},
     mrnumber = {458128},
     zbl = {0381.46008},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1977__35_2_189_0/}
}
TY  - JOUR
AU  - Altshuler, Z.
TI  - A Banach space with a symmetric basis which contains no $\ell _ p$ or $c_0$, and all its symmetric basic sequences are equivalent
JO  - Compositio Mathematica
PY  - 1977
SP  - 189
EP  - 195
VL  - 35
IS  - 2
PB  - Noordhoff International Publishing
UR  - http://archive.numdam.org/item/CM_1977__35_2_189_0/
LA  - en
ID  - CM_1977__35_2_189_0
ER  - 
%0 Journal Article
%A Altshuler, Z.
%T A Banach space with a symmetric basis which contains no $\ell _ p$ or $c_0$, and all its symmetric basic sequences are equivalent
%J Compositio Mathematica
%D 1977
%P 189-195
%V 35
%N 2
%I Noordhoff International Publishing
%U http://archive.numdam.org/item/CM_1977__35_2_189_0/
%G en
%F CM_1977__35_2_189_0
Altshuler, Z. A Banach space with a symmetric basis which contains no $\ell _ p$ or $c_0$, and all its symmetric basic sequences are equivalent. Compositio Mathematica, Volume 35 (1977) no. 2, pp. 189-195. http://archive.numdam.org/item/CM_1977__35_2_189_0/

[1] Z. Altshuler: Characterization of c0 and lp among Banach spaces with symmetric basis. Israel J. of Math. 24(1) (1976) 39-44. | MR | Zbl

[2] T. Figiel and W.B. Johnson: A uniformly convex Banach space which contains no lp. Compositio Math. 29(2) (1974) 179-190. | Numdam | MR | Zbl

[3] W.J. Leveque: Topics in number theory I. Addison-Wesley Publishing Company. | Zbl

[4] B.S. Tsirelson: Not every Banach space contains an imbedding of c0 or lp. Functional analysis and its application 8 (1974) 138-141. | Zbl