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CANONICAL DIVISORS AND THE ADDITIVITY OF THE

KODAIRA DIMENSION FOR MORPHISMS OR RELATIVE

DIMENSION ONE

Eckart Viehweg

All schemes, varieties and morphisms are defined over the field of

complex numbers C.
The following conjecture due to Iitaka is a central problem of the

classification theory of algebraic varieties ([21; p. 95], [22]):

CONJECTURE Cn,m: Let ir: V ---&#x3E; W be a surjective morphism of
proper, regular varieties, n = dim ( V) and m = dim (W). Assuming a

general fibre Vw = 1T -l( w) is connected, we have the following inequal-
ity for the Kodaira dimension :

C2,, is a corollary of Enriques’ and Kodaira’s classification theory of
algebraic surfaces [21; p. 133]. Recently another proof has been given
by K. Ueno [23]. I. Nakamura and K. Ueno solved Cn,m for analytic
fibre bundles 7r : V---&#x3E; W. In this case, V need not be algebraic and
equality holds [21]. In [22], Ueno gave a proof of C3,2 when 7T: V - W
is a family of elliptic curves with locally meromorphic sections. Some
other special cases of Cn,l are treated in [21; p. 134] and [23].

In this paper we give an affirmative answer to Cn,n-1 (w need not be
equidimensional).
The case C2,1 of "families of curves over a curve" is treated

separately (3.7). The proof in this case is rather elementary. In

addition we are able to give an explicite description of the canonical
divisor of V in terms of the Weierstrass points of the regular fibres
and the local behavior of 7T near the degenerate fibres (3.6). The

resulting formulas for the square of the canonical divisor ((3.6) and
(4.13)) generalize the formula given by Ueno (see [16; p. 188] and
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(4.9)) for families of curves of genus 2. However, as we will see in §4,
the "local contributions" are not completely determined by the local
invariants of the degenerate fibres ([16], [19]).

In § 1 we summarize some known results about the Kodaira dimen-
sion and give the reduction of Cn,n-1 to some statement C’,,,-, (1.6)
about the "relative dualizing sheaf". §2 deals with stable curves. We
give a description of the relative dualizing sheaf of stable curves
using Wronskian determinants (2.10). In §3 and §4 we handle the

special case "families of curves over a curve". The proof of Cn,n-1 is
given in the second half of this paper. §5 contains the proof of some
kind of "stable reduction theorem" for higher dimensional base
schemes (5.1) and in §6 we use (S.1) and duality theory [6] to reduce
the proof of Cn,n_1 to stable curves. This special case is handled in §7
and § 8.
The proven result is slightly stronger than Cn,n-1 (see Remark 1.8).
The author wishes to express his gratitude to the Department of

Mathematics of the Massachusetts Institute of Technology for the

hospitality extended to him.

§1. Kodaira dimension and L-dimension

In this section, X is assumed to be a proper, normal variety and 0
to be an invertible sheaf on X.

1.1. DEFINITION:

(i) We set N (Y, X) == {m &#x3E; 0; dimc H°(X, Lm ) ~ 1}.
(ii) For m E N(L, X), we denote by On,^: X __&#x3E; pN the rational map

given by 0,,,,Y(X) = (CPo(x), ..., CPN(X)) where cpo,..., CPN is a

basis of HO(X, L~m).
(iii) The L-dimension of X is

K(Y, X) 00 if N(Y, X) = 0K(L,X)= X) = {- 00 if N(I£, m = 0 (L, X)) if N (L, X) ~ 0.
K(L, X ) -max fdim (,P.,y(X»; m E N (Y, X)l if N (Y, X) 0 0.

1.2. DEFINITION: Let X be regular and denote the canonical sheaf
of X by wx. Then K(X) = K(wx, X) is the Kodaira dimension of X.

The reader is referred to Ueno [21] for a general discussion of
Y-dimension and Kodaira dimension. The proofs of the following
statements can be found in chapters II and III of [21].
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1.3. PROPERTIES OF THE 5£-DIMENSION:

(i) There exist positive real numbers a, j6 and m°, such that for all
m E N (L, X ), m ~ mo, we have:

a * m K(YX) ~ dim, H°(X, Yom):5,8 . m K(I£,X)

(ii) Let /:X’-&#x3E;X be a surjective morphism of normal, proper
varieties. Then K(f *L, X’) = K(L, X).

(iii) Let 0’ - Lo’, a &#x3E; 0, be a non trivial map of invertible sheaves
on X. Then K(oP’, X):5 K(L, X).

1.4. PROPERTIES OF THE KODAIRA DIMENSION: X is assumed to be

regular.
(i) K(X) depends only on the field of rational functions C(X) (i.e.,

K(X) is an invariant of the birational equivalence class of X).
(ii) For every m E N(,wx, X) we denote the closure of the image of

X under CPm,Cùx by Xm. The induced rational map from X to Xm
we also denote by Om@.x. Assume K(X) ~ 0. Then there exists a
surjective morphism of regular projective varieties f : X’--&#x3E; Y’
and mo EN, such that for every m E N (wx, X), m ~ mo, the
following conditions are fulfilled:
(a) f is birationally equivalent to 0,,,,.x : X ---&#x3E; Xm (see remark
1.5).
(b) C(Y’) is algebraically closed in C(X) and K( Y’) = dim ( Y’).
(c) There exist closed subvarieties Zi C Y’, Z;~ Y’ for i EN,
such that for every y E Y’ - UiEN Zi the fibre X’ y = f -’(y) is

irreducible, regular and of Kodaira dimension zero.
(iii) Let g: X --&#x3E; Y be a surjective morphism of proper, regular

varieties and Xy a general fibre of g. Then we have:

1.5. REMARK: Two rational maps (or morphisms) 17"i: Vi --&#x3E; Wi, i =

1, 2, are called birationally equivalent, if there exist birational maps
ç : Vs V2 and q: W, --&#x3E; W2 such that 17 . 17"1 = lr2 - ~.

1.4(i) enables us to replace the morphism 17": V --&#x3E; W in Cn,m by any
birational equivalent morphism. Of course, to prove Cn,m we may
always assume that neither W nor VW is of Kodaira dimension - 00.
Let C be a curve of genus g. Then
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Hence we may assume, in order to prove that the general fibre
of ir is a curve of genus g ~ 1. The only possible values of K( Vw) are
0 and 1.

1.6. STATEMENT C’,,,: Let wi : V, ---&#x3E; W1 be a surjective morphism of
regular, proper varieties with connected general fibre, n = dim ( V1) and
m = dim (W1). Then there exists a birationally equivalent morphism
w : V ---&#x3E; W of regular, proper varieties, such that for a general fibre Vw
of 7r we have the inequality

In §8 we are going to prove Cn,n-1· The special case C2,1 is proven in
§3. The connection with conjecture Cn,n-1 is given by:

1.7. THEOREM: Assume that statement C,r-1 is true for all r ~ n.
Then Cn,n-1 is true.

PROOF: Let 03C0 : V ~ W be a morphism, satisfying the assumptions of
Cn,n-1. Remark 1.5 enables us to assume that K(wv~ 03C0r*w / ,V) &#x3E; K( Vw)’
We are allowed, of course, to exclude the trivial cases K(Vw) =-00
or K(W) = -00. Choose mEN such that m E N(úJv, V) n N(úJw, W)
fulfills the condition 1.4(ii), and such that (úJv @ 1T*úJ)~m has a non
trivial global section. We have an injection

Using 1.3(i) we get K(V) - K(W).
Assume now, that K( Vw) = 1 and K( V) = K( W). The injection 7Tr-

gives a commutative diagram:

where p is a projection. The dimension of the images Vm and Wm are
equal and C(W,,) is algebraically closed in C(W) (1.4(ii)) and there-
fore in C(V). Hence p induces a birational map from Vm to W,,.
We can find u E Wm such that (p - l/Jm,(ùv)-l(u) and e-’ w(u) are



201

birationally equivalent to regular varieties V" and W" of Kodaira
dimension zero ( 1.4(ü)(c)). Blowing up points of indeterminacy [8], we
may assume that 7r induces a surjective morphism ir": V" - W". If we
choose u in general position, the dimension and the Kodaira dimen-
sion of a general fibre of -rr" are both one. For k E N(úJw", W") ~ 0 the
sheaf w$1 has a non-trivial section and hence (1.3(iii)) 0 = K(V")
K(ir"*w W. wv,,, V"). This is a contradiction to C’,-,, where r =

dim ( V").

1.8. REMARK: Let K( W) &#x3E;_ 0. The argument used at the end of the

proof gives the inequality K ( V ) ~ max (K ( W ) + K ( Vw ),
K(wv ~ W V)). In §8 we are going to prove a slightly stronger
statement than Cn,n-1· Let g be the genus of VW and Mgo the coarse
moduli scheme of regular curves of genus g. The smooth part of

7T : V--&#x3E; W induces a rational map ~ : W--&#x3E; Mgo. We prove that

K(,wv @ ’TT*úJ) ~ max (K( Vw), dim (~p(W))).
Hence we get in addition: K(V)dim(cp(W)) if K ( W ) ? 0.

§2. Stable curves and Weierstrass sections

The main references for stable curves are [4], [12] and [5], [11] ]
(genus one).

2.1. DEFINITION: Let S be a scheme and g ~ 1.

(i) A pseudo-stable curve of genus g over S is a proper, flat

morphism p:C--&#x3E;S whose geometric fibres are reduced, con-
nected 1-dimensional schemes C, of genus g (i.e., g =

dimc H 1( Dcs)) with at most ordinary double points as sin-

gularities.
(ii) A pseudo-stable curve is called stable, if any non singular

rational component E of a geometric fibre C, meets the other
components of C, in more than 2 points.

Example: The only singular stable curve over C of genus 1 is a

rational curve with one ordinary double point.
An important advantage in considering stable curves is the exis-

tence of moduli schemes. For the definition of fine and coarse moduli

schemes see [13; p. 99].
Popp gave a definition of level li-structure for stable curves of

genus g - 2 in [18; p. 235]. We need only two basic properties:



202

2.2:

(i) Let K be a field of characteristic zero and C a geometrically
irreducible, regular curve over K of genus g ~ 2. Then there
exists a finite algebraic extension K’ of K, such that C x K K’
allows a level g-structure.

(ii) Let C be a stable curve over C. Then there exists only a finite
number of level ii-structures of C over C.

2.3. THEOREM (Popp [18]):
(i) The coarse moduli space Mg of stable curves of genus g ? 2

exists in the category of algebraic spaces of finite type over C.
(ii) The fine moduli space M;) of stable curves of genus g ~ 2 with

level 1£-structure (u, _&#x3E; 3) and a universal stable curve

p 9 9 M;) with level IL-structure exist in the category of
algebraic spaces of finite type over C.

(iii) Mg and AÉg) are proper over Spec (C).

Knudson and Mumford obtained a stronger result (see [14]) which
is, however, still unpublished:

2.4. THEOREM: The coarse moduli space Mg is a projective scheme
over C.

For simplicity we are going to use this result. It would be possible,
however, to avoid it by working in the category of algebraic spaces in

§2, §5 and §7.

2.5. COROLLARY: ËM) and M;) are projective schemes.

PROOF: M;) is quasi-finite over Mg (2.2(ii)) and p(g) is a projective
morphism [4].

In the case g = 1 Deligne and Rapaport gave a definition of level
IL-structure in [5]. It includes the condition that the stable curve is a

generalized elliptic curve [5; p. 178]. For our purpose it is enough to
know that the properties 2.2 also hold in this case and that we have
the theorem [5]:

2.6. THEOREM: The coarse moduli scheme Ml of stable curves of
genus 1 and the fine moduli scheme el’) of stable elliptic curves with
level li-structure (IL ? 3) exist as projective curves. AÉI’) is a finite
Galois cover of MI. The open part of AÉ,’) corresponding to the

regular curves is affine.
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2.7. LEMMA: Let S be a normal, proper variety. For i = 1, 2 let

pi: Ci ---&#x3E; S be stable curves of genus g - 2. For some open set U C S let
plu : Ciu ---&#x3E; U be the restriction of pi. Then any U-isomorphism
fU: Cl U ---&#x3E; C2U can be extended to an S-isomorphism f : CI --&#x3E; C2.

PROOF: The functor Isoms (CI, C2) is represented by a scheme
IS(C1, C2) which is finite over S [4; p. 84]. f u induces a morphism
U ---&#x3E; IS(CL, C2) over S, which can be extended to S (see [24;
II.6.1.13])..

A pseudo-stable curve p : C - S has an invertible dualizing sheaf

2.8. LEMMA [4] :
(i) wcjs is compatible with base change.
(ii) P*úJc/s and R 1p*OC are locally free of rank g and dual to each

other.

(iii) Assume that S is regular and Co ç C the open subscheme on
which p is smooth. Let 03A9cis be the sheaf of relative differentials.
Then úJc/slco == nB/slco’

In the second half of this section we are going to describe a divisor

D with úJ(g+1)/2 == Oc(D).
Henceforth let S be a normal scheme and p : C - S a pseudo-stable
curve with smooth general fibre. Let L be an invertible sheaf on C,
such that P*:£ is locally free of rank r &#x3E; 0. Let So be the regular locus
of S and Co ç C the open part, lying over So, on which p is smooth.
The restriction of p to Co is denoted by po.

Since po is smooth, every point x E Co has a neighbourhood U such
that the restriction of po to U factors U-L- Spec(A[t’])-
Spec (A) - So where g is etale. Let t be a parameter on U, lying over
t’, then 03A9Q/so is generated at x by dt. Let qi, ..., TIr be sections of p *:£
in a neighbourhood of p(x) and 17 a generator of L in a neigh-
bourhood of x. Locally we can write Tli = f; . q for i = 1,..., r. Define

[’Tl1, ..., ’Tl,] is independent of the chosen t and n and defines a section
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of Lr (x) (no/So)@r(r-1)/2 over some neighbourhood of p-1(p(x)). Now
assume, that 1J,..., 1Jr and 1J;,..., q) are two bases of p*L near p(x)
such that

Then

Hence [171,.... 17r] . (ni A ... A Tlr)-l is independent of the chosen basis.
Since C - Co is at least of codimension 2 in C we are able to define:

2.9. DEFINITION: Denote Or(r- 1)/2 0 (p * 
r 

p*L)-l 1 by W(L).
The global section s(L) = I’ql, ..., TIr] . (’ql A ... A ’nr)-l 1 of JV(0) over
C is called the Weierstrass section of L.

p*wcls is locally free of rank g and hence we have a Weierstrass
section s(tocls). If, for example, S = Spec (C), then the divisor of this
section is just the usual divisor of Weierstrass points.

(ocls and s(wcls) are compatible with base change, as long as the
assumptions of this section are fulfilled.
For simplicity we use the following notation: Let D be a divisor

and 0 an invertible sheaf such that 5£ == Oc(D). Then we write 0 - D.
The general fibres of p : C --&#x3E; S are regular. We define Wpcls to be

the closure of the divisor of the Weierstrass points of the general
fibres of p.

2.10. THEOREM (Arakelov [2; p. 1299]): Let p: C --.&#x3E; S be a pseudo-
stable curve of genus g ? 1 and S a normal scheme. Let U = Is E S; s
regular point and p-1(s) regular curve}. Let d be a divisor on S such
that 1B g p*wcls - d. Then there exists a positive divisor Ecls with
support in p-1(S - U) such that

PROOF: For a (local) base úJ},..., úJg of p,,wcls the section

, ..., úJg] does not vanish identically on a smooth fibre of p.

Therefore, the divisor of this section is of the form Wpcls + Ecis.

2.11. REMARKS:

(i) In the case g = 1, there are no Weierstrass points and it is

possible to show that Ecls is the zero-divisor if the curve is stable
[5; p. 175]. Hence in this case 2.10 reduces to p*p*wcjs ~ tocls.
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(ii) If dim (S) = 1, the support of WPc/s is finite over S. This is

unfortunately no longer true for dim ( S) ? 2 and g a 3.

§3. The canonical divisor of families of curves over a curve

In §3 and §4 we make the following assumptions:

3.1 : Let W be a regular, proper curve of genus p, let V be a regular,
proper surface and 03C0 : V- W a surjective morphism whose general
fibre is a regular curve of genus g - 1.

It follows, that ir is flat. A fibre VW = ’TT -1( w) is "degenerate", if it is
not reduced or if it has singularities.
d lw E W; Vw degenerate fibrel is a finite set of points. Let

wvjw WV 0 7r*w$ be the dualizing sheaf of ir ([6] or §6). We want to
describe (ov. If g : V* --&#x3E; V is the proper birational morphism obtained
by blowing up a closed point of V and F the exceptional divisor, it is
well known, that wv* = g*ù)v ~ Ov*(F). Therefore we may assume
that for all w E 4 (’TT -1( W))red has only ordinary double points as

singularities.

3.2. LOCAL DESCRIPTION ([11] for g = 1 and [19] for g ~ 2) : For
w E 4 let p : F ~ V X w Spec (Ô,,,, w) --- &#x3E; S = Spec (Ôw,w) be the induced
local family of curves (" " denotes the completion with respect to the
maximal ideal).
There exists a cyclic covering S’of S with Galois-group (03C3) such

that the normalization T’ of F X s S’ is birationally equivalent to a
stable curve p": F"---&#x3E; S’. The group (03C3) operates on T", compatible
with the operation on S’. Let’s call the tuple (p" : F" ---&#x3E;S’, 0-) a stable
reduction of 03C0 : V - W at w. Denote the closed point of S also by w
and the closed point of S’ by w’.
Assume that every multiplicity occurring in Fw Vw divides n =

ord (u). The special fibre Fi, of r’ is reduced and has singularities of
the (analytic) type u - v - t", r E N (see [12]). Hence the minimal

desingularisation Fd of T’ also has a reduced special fibre and is

pseudo-stable over S’. The natural maps are denoted by:
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Let Ed = ErdlS’ be the divisor defined in 2.10. Let ld be the number
of double points of the special fibre (Fd),,. Define S’w = 1 (ec, - n)C’
where the sum is taken over the set of irreducible components C’ of

F’ w and ec, is the ramification index of C’ over T.

3.3. DEFINITION: Using the notation of 3.2, we define on F (resp.
on V):

Ew may have rational coefficients and lw may be a rational number.
The definition is independent of the chosen S’:

3.4. LEMMA :

(i) 8w = ~ ( 1- mult (C») . C where the sum is taken over all ir-

reducible components C of Fw ~ Vw and mult (C) is the mul-

tiplicity of C in Vw.
(ii) Ew, lw, and 8w are independent of the chosen stable resolution.

PROOF: The description of 8w in (i) follows from [19, Lemma 7.2].
To prove (ii) we may assume that r is already pseudo-stable over S.
In this case, however, F’ is the fibre product r x s S’and has sin-

gularities of the type u . v - tn lying over every double point of rw.
The second statement follows from the compatibility of Weierstrass
sections with base change and [3; Theorem 2.7].

3.5. REMARK: A stable resolution (p" : F" --&#x3E; S’, 03C3) of ir in w is called
minimal if ord (03C3) = ord (uw) where uw is the restriction of 0’ to FÏ.
Such a minimal stable resolution always exists [19]. It is unique up to

isomorphism and determines p : F ---&#x3E;S. Lemma 3.4 just says that Ew,
8w and lw depend only on the minimal stable resolution.

3.6. THEOREM: We use the notations and assumptions made in 3.1
and 3.3. Let Wp be the closure of the Weierstrass points of the general
fibre of ir. Then there exists a divisor d on W such that: (We denote the
intersection numbers by (.) or ( )2)
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where

(v) deg (d) ? 0, and deg (d) = 0 if and only if there exists a finite
cover W’ of W such that V x w W’ is birationally equivalent to
a trivial family of curves over W’. In this case we may assume
d = 0.

3.7. COROLLARY: C2,1 is true.

PROOF: If deg (d) &#x3E; 0, the divisor d is ample on W and hence C2,1 
follows from 3.6(i) and 1.3. If deg (d) = 0 it follows from 3.6(v) and 1.3
that

3.8. REMARK: Using the Nakai-Moisezon criterion for ampelness,
1.4(iii) and 3.6 we get more exact results:

K(V) = 2 if g 2 and deg (d) &#x3E; - (p - 1)(g + I)g,

K(V) &#x3E;_ 1 if g &#x3E;_ 2 and deg (d) = - (p - 1)(g + l)g and

K(V) = 1 if g = 1 and deg (d) &#x3E; - 2 - (p - 1).

PROOF oF THEOREM 3.6: Using the same kind of construction as in
3.2, we can find a Galois cover W’ of W such that the desin-

gularisation Vd of the normalisation V’ of W’ x w V is a pseudo-stable
curve of genus g. The natural morphisms are denoted by:
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Let n be the degree of W’ over W and d’- !B g ’TT d*úJ Vd/ W’. Define

d = n -lfo*d’.
Statement 3.6(i) is true for pseudo-stable curves (2.10). We know

[3; Theorem 2.7] that h*úJVd/W’ = wv,lw, is an invertible sheaf. By
definition of 8w and wvlw, we have:

and 3.6(i) follows directly from the definition of the local terms.

ù)V = WV/W 0 ir*cùw and from 3.6(i) we get

and hence 3.6(ii).

3.9. LEMMA: Assuming V is pseudo-stable, we have:
(i) X(Ov) = (P - 1)(g - 1) + deg (d)
(ii) Let e(V) be the Euler number of V. Then

PROOF: The Leray spectral sequence H’(W, Rpff *OV) =&#x3E;
Hq+P( V, Ov) and ’TT*Ov = Ow gives us X(Ov) = ( 1- p) - X(W, R’ir* Ov).
Hence (i) follows from 2.8(ii) and the Riemann Roch formula for locally
free sheaves on curves. Statement (ii) is proven in [9] and (iii) follows
from Noether’s formula 12X(Ov) = e( V) + (úJv)2 and 3.6(i).
Back to the proof of the Theorem: In general, 3.6(iii) follows from

3.9(iii) and 3.8. To get 3.6(iv), one must simply compare the two
equations for (úJV/W)2 you get from 3.6(i) and 3.6(iii). The term ( Wp )2
can be eliminated using the genus formula for curves on surfaces.

3.10. LEMMA: Assume that V is pseudo-stable over W and that the
Weierstrass points of the generic fibre of ir are C(W)-rational. Then
we have:

(a) Wp = ~ri=1 kiDi where Di are prime divisors and the support of Di
is isomorphic under ir to W.
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(c) deg (d) ~ 0 and deg (d) = 0 if and only if 7r : V- W is smooth
and ( Wp )red without singularities.

PROOF: (a) is proven in [17; p. 1148].
(b) follows from 3.6(i) and the genus formula for curves on sur-

faces. To prove (c) substitute 3.10(b) in 3.6(iv) and check that the
coefficients are positive for g ~ 1.

PROOF oF 3.6(v): From the definition of d and 3.10, it follows, that
deg (d) ± 0. If deg (d) = 0 we know that 03C0d : Vd ---&#x3E; W’ is smooth. From
[17; Prop. 5] for g ~ 2 or 2.6 for g = 1, we find that we may assume,
that Vd is trivial over W’, and therefore d’ = d = 0.

§4. Calculation of the local terms

To calculate the square of the canonical divisor of V using 3.6, we
have to know the local contributions. That means: let ir : V ---&#x3E; W be as

in 3.1 and let w E ~. The special fibre of ir at w can be written

Vw = lï=l -vici, where vi E N -{0} and Ci is a prime divisor of V. We
already know (3.4) that 8W = ~’=, (1 - -vi)Ci. Hence we have to cal-

culate Ew = I[=i &#x3E;;C;, (Ci. Wp) and lw. The remaining term k(Ci) is

determined by x(Oc,) and the intersection theory of the fibre.

4.1: By assumption ( Vw)rea has only double points. Let ( , ) denote
the smallest common divisor of two natural numbers. Define À(x) =
(Vi, Vj)2 . pi 1 vil, if x E ci ~ Cj for i ~ j, and À(jc) = 0, if x is regular on
(Vw)red’ Then it easily follows from [12; p. 7] and [19; §6] that

lw = L A(x) where the sum is taken over all closed points of Vw.

4.2. REMARK: If we know for all j, except j = i, the multiplicity uj
of Cj in Ew, we are able to express I£i in terms of (Ci - Wp ) using 3.6(i)
and the genus formula for curves on surfaces. Therefore the remain-

ing problem is to calculate either the multiplicity in Ew or the

intersection number for "enough" components. We may assume that
p: F ---&#x3E; S is pseudostable and TW V,,.

4.3. TWISTING wrls: Let ~ (o) Y-ï=, nici be some positive divisor,
E=max{ni;i=l,...,r} and define for j = 1, ..., E ~(j)=
~= max ( ni - j, 0) - Ci, 5t(j) = oirls OO O(~(j)) and Lw (j ) _ 5t(j) O Orw.



210

Assumption (*):
(a) For j = 1,..., e we have dimc H °(Fw, 5£w(j)) = g.
(b) For some component of rw (let us say CI) the canonical map

HO(rw, 5£w(O)) ~ HO(rw, 5£w(O) @orw DCt) is an isomorphism.
It follows for j = 1,..., e that p*5£(j) is locally free of rank g.
Now let ’rI),..., ng be a basis of p*5£(j) and E(j) the part of the

divisor of the section [’ri?),..., Ty] of W(5£(j)) with support in the
special fibre.
Let ç ( j) : 0( j + 1 ) - 0( j) be the canonical map and

~w(j): HO(rw, Lw(j + 1)) ~ HO(rw, 5£w(j)) the induced map. d(j) is de-

fined to be the dimension of the image of CPw(j).

4.4. LEMMA:

PROOF: Let E* be the part of the divisor of the section

[~ (j)(71 1""), ... , ~(j)( 71+1))] of ’W(L(j» with support in the fibre. Then
E* = E(j + 1) + g - (0394 (j) - 0394(j + 1)). We may assume, that the first d(j)
sections 71Y+l) generate the image of CPw(j). The rest of the sections
vanish on the special fibre with order 1 and the lemma follows.

4.5. REMARKS:

(i) If the assumption (*) is fulfilled for some A (0) and some Cl, we
are able to calculate IL 1 using 4.4. It is always possible to find
such a divisor for every component, if the graph of Tw is simply
connected and if the double points of Tw are in general position.
In this case Ew is uniquely determined by the isomorphism-
class of r w.

This, however, is no longer true in general. A counter-
example is given by a fibre Tw with three components and two
double points, if one of the double points is a Weierstrass point
of one component.

(ii) Under the assumptions and notations of 4.3, the isolated zeros
of the Weierstrass section of !£w(O) outside the singular points
of Vw are (with multiplicity) intersection points of Vw and Wp.

4.6. EXAMPLES:

(a) Assume VW = C1 U C2 U ... U Cr where Ci is a regular rational
curve for i = 2, ..., r and Ci is a curve of genus g - 1. Assume that
the double points are in general position on Ci.

For C1 1 we can take 0394(0)=0. We get 03BC1=0 and there are g3 _ g2
intersection points of Ci and Wp outside the singular points of V w.
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Hence g2 - g intersection points must lie on C2 U ... U Cr. If g = 2, it
is easy to show (using 4.3 and 4.4) that the remaining 2 intersection
points lie on Ci,,,,, if 2 divides r.

(b) Assume Vw=C1U...UCrUCr+1UCr+Z where C,, ..., C, are

regular rational curves and Cr,* is a regular curve of genus gi, i = 1, 2
and assume that the double points are in general position.

Then g=gi+g2. Take 0394(O) = ~ g2 . i . Ci + (r + 1) . g2 . Cr+2. From
4.4 we get ILr+1 = (r + 1) . g2 and there are g2. gl - g2 intersection

points of Cr+1 and Wp outside the singular points of Vw. By symmetry
and 4.2 we find :

4.7. THE CASE g = 1: (1T: V ~ W as in 3.1) In this case we already
know (2.11(i)) that Wp = EW = 0 for stable curves, and hence 3.6

reduces.

Let l1w be the maximal multiplicity occuring in 1T -1( W) and define
03B4 w = (1 - l1w) . T?w ’ 1T -1 ( W). Then:

4.8. THE CASE g = 2: Using the methods from 4.6, one is able to
find Ew for every stable curve of genus 2. It is important, that the
components of a singular stable curve of genus 2 are at most of

geometric genus 1 and hence "all points are in general position". Let’s
make the following definition:
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Let (p" : F" S’, 03C3) be a minimal stable resolution (3.5) of 7T in w.

Then let nw=(ord(03C3))’{jcEr singular and r’;v - {x} con-

nected} and mw = (ord (03C3))-1. #(x E F" ; x singular and F" - {x} not
connected}.
Using that definition one gets (Ew - Wp) = 6mw + nw and k(Ew) = 2mw

if Vw is pseudo-stable. The fact that Wp has no singularities outside
the degenerate fibres of 7T (every fibre is hyperelliptic) yields:

4.9. THEOREM (Ueno; see [16]): Let 7T: V - W be as in 3.1, g = 2.
Then we have (úJV)2 = 8(p - 1) + ¿ wEi! qw where qw depends only on
the local invariants [19] of 7T in w and

4.10. EXAMPLE: One possible fibre is of the form [19; Ex. 8.4]:

where all components are rational. Using 3.4(i) one gets k(5w) = 0 and
(8w)2 = - 4. The description in 4.1 yields lw = v + 2. The fibre of the
minimal resolution (see [19; 8.4]) is simply connected and we have
nw = 0 and mW = v - 2. The local contribution in this example is

therefore = - 7 5 V + 5.

4.11. REMARK: The fact that for g &#x3E; 2 the local contributions Ew
are not completely determined by the local invariants, defined in [19],
of the degenerate fibres can be explained in the following way: Let

M g be a fine moduli scheme of stable curves of genus g with some
suitable additional structure (for example: The Hilbert scheme of
three canonical embedded stable curves [4] or em) (see 2.3)) and

P:Z*---&#x3E;M* the corresponding universal curve. Let M go be the open
subscheme of M*, corresponding to regular curves. Then M g - M go
is the union of irreducible closed subschemes So,..., Sr of codimen-
sion 1 ( r = 4g or r = 2(g - 1 )) with the following property [4]: So X Mg Z g
is a family of irreducible curves with one double point. Si x * 9 Z* 9 has
two components Zli and zj2) which are families of curves of genus i

and g - i.
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The arguments of 4.4 and 4.6 give the description of ca = úJZ;/M;:

Let 03C0 :F ~ S be a pseudo-stable curve over a local scheme. The
corresponding divisor Ens + Wprjs is then the pullback of the right
hand side, but Wpris is not the pullback of WPZ*/M*. One of the
reasons is that for g &#x3E; 2 the support of WPZ*/M* is not finite over Mg.

4.12. ADDENDUM: The situation is much better if we restrict our-
selves to families of curves with hyperelliptic general fibre. In this
case, the number y occurring in 3.6(iv) is zero and hence deg (d )
depends only on the local behaviour of the family near the degenerate
fibres.

Now let Hgô be the subscheme of At;) for some g &#x3E; 2 cor-

responding to hyperelliptic regular curves, H = H;) the closure in
At;) and p : C - H the corresponding family of curves. If 7r: V - W
is a family of stable curves with hyperelliptic general fibre and level
03BC-structure let ~ : W ~ H be the induced morphism. deg (d) is nothing
but the intersection number of ç(W) and A g P*úJC/H’ In this case

3.6(iv) means that 1B g P*úJC/H is numerically equivalent to a divisor
with support in H - Hgô. Therefore Theorem 4.9 can be generalised:

4.13. THEOREM: Let 03C0 : V-&#x3E; W be as in 3.1, g &#x3E; 2, and assume that
the general fibre is a hyperelliptic curve. Then we have: (úJv)2 =
8(p - 1)(g - 1) + ~w~~ ’T1w where ’T1w depends only on the local invariants

[19] of 03C0 in w.

The numbers ’T1w can be calculated using 3.6, 4.1, 4.6(a) (the remain-

ing 2 intersection points of multiplicity 1/2 (g2 - g) lie on C2r+1 if 2

divides r) and 4.6(b).

§5. "Stable reduction" for higher dimensional base-schemes

In this section we are going to prove the following theorem:

5.1. THEOREM: Let TrI: V1 - W1 be a surjective morphism of proper,
regular varieties such that the general fibre of TrI is a connected curve

of genus g &#x3E; 1. Then there exists the following commutative diagram
of morphisms of proper varieties :
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having the following properties:
(i) w : V- W is a surjective morphism of regular varieties with

connected general fibre and is birationally equivalent (1.5) to

r1 : V1 ---&#x3E; W1.
(ii) h : V’--&#x3E; V and g : W’--&#x3E; W are flat covers and V’ is birational

equivalent to W’ x w V. The only singularities of W’ and V’ are
quotient singularities [20].

(iii) ’TTs: Vs --&#x3E; W’ is a stable curve of genus g with level 1£-structure,
IL ? 3, and f : V’---&#x3E; Vs is a birational morphism.

(iv) Every morphism and every scheme occurring in the diagram is
projective.

PROOF: The smooth fibres of ’TT induce a rational map CP1: W1 --&#x3E;Mg
(see §2). Mg is proper and hence after eliminating the points of
indeterminacy [8] and replacing the pullback of VI by a regular model
[8], we may assume that CP1 is a morphism. Using Chow’s lemma we
may also assume that 03C01, Wl and VI are projective.

For 03BC~ 3 we are able (2.2(i)) to find a finite Galois cover gl : W1 &#x3E;
W1 such that the generic fibre of VI x W, W’l over W’ , has a level
g-structure. Let ~ ( W i/ Wl) be the ramification locus of W’l in Wl. By
"purity of the branch locus" A(W’IIWI) is of codimension one. Using
"embedded resolution of singularities" [8] we find a sequence of
monoidal transformations q : W ---&#x3E; W, such that q -’(A (W’11 W,» has
regular components and at most normal crossings as singularities. Let
W’ be the normalization of W x wl W 1 and g: W’--&#x3E; W the induced

morphism. Since 4(W’IW) c q’(4(W§lwi)), it follows from [20;
Lemma 2] that g is flat and W’ has at most quotient singularities.
Let At;) be the fine moduli scheme of stable curves with level

1£-structure (2.4). Then the generic fibre of W’ x w1 V1 induces a

rational map ~’ : W’--&#x3E; Mg(03BC) which is compatible with the morphism
ç = ~ 1 . q : W --&#x3E; Mg. Since At;) is finite over Mg it follows that cP’ is a
morphism [24; II, 6.1.13] and induces a stable curve ’TTs: V,--&#x3E; W’.
The morphism 7Ts is projective [414] and hence V, is projective. Let G

be the Galois group of W’ over W. By definition of V, we have an

operation of G on the generic fibre of ir,.
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5.2. LEMMA: The operation of G on the generic fibre of 71’s extends
to an operation of G on Ys, compatible with the operation of G on W’.

Since Vs is projective, the quotient exists. The universal property
of quotients gives us a morphism VIG --&#x3E; W’/G = W. If we look only
on the generic fibres, we have just made an extension of the base field
and then divided by the Galois group of this extension. Therefore
V,IG is birationally equivalent to VI. Using resolution of singularities,
Chow’s lemma and embedded resolution of singularities again, we
find a regular projective variety V and a projective birational mor-
phism V --&#x3E; V,/G, such that: Let V’ be the normalization of V X w W’
and h : V--&#x3E; V the induced morphism, then d (V’/ V ) has regular
components and only normal crossings as singularities. Hence [20;
Lemma 2] h is flat and V’ has only quotient singularities.

Finally the birational morphism f : V’--&#x3E; Vs over W’ exists, since V’
is also the normalization of Vs x VslG V.

PROOF OF LEMMA 5.2: Every E G induces an isomorphism of
W’ and there exists a cr invariant open subscheme U C W’ such that

is commutative. We denote by os the isomorphism induced by 03C3 on
-rrs 1( U). For g&#x3E;2 it follows from 2.7 that 03C3’ can be extended to an

isomorphism of Vs. For g = 1 we know that M1(03BC) is a curve and it

follows directly that there is an isomorphism 03C3" of M1(03BC) such that

is commutative. Therefore in this case the Lemma follows directly
from the definition of Vs.
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5.3. COROLLARY: Under the assumptions and with the notations of
5.1

(i) V’, W’ and Vs have rational singularities [20] and are Goren-

stein schemes [6; V §9].

PROOF: (ii) follows from (i) and [20; Lemma 1]. We know from [20;
Prop. 1] that V’ and W’ have rational singularities. To prove that V,
has rational singularities we may assume (using "flat base change")
that W’ is regular. Then from [4] or the deformation theory of

ordinary double points of curves, it follows that the completion of a
singular local ring of V, has the form

and the rationality follows from [20; Prop. 2]. V, is locally a complete
intersection over W’ and hence it remains to show that V’ and W’ are

Gorenstein schemes. Both are flat, finite covers of regular schemes.
The question is local and hence it is enough to consider the following
situation: Let A be a local Gorenstein ring, B a local ring and a free,
finite A-module [1; p. 60]. There exists no such that ExtÂ (A/m A, A) =
0 for i &#x3E; no [10; p. 163]. Hence ExtiA (A/m A, B) = 0 and from [7; p.

164] we get ExtB (B x0 Alm A, B) = 0 for 1 a no. Since B is free over A
we get Extk (B/m B, B) = 0 for i no and B is a Gorenstein ring.

§6. Duality theory

In order to compare the Kodaira dimensions of the varieties oc-

curring in 5.1 we need some results of Grothendieck duality theory.
Let f : X ---&#x3E; Y be a projective embeddable morphism of noetherian
schemes of finite Krull dimension. This is the case if Y is a projective
variety and if f is a projective morphism [6; p. 206].

Let Dqc(X) be the derived category of quasi-coherent sheaves on X
[6; p. 85] and D;c(X) (resp. Dqc(X)) the full subcategory of complexes
bounded below (resp. above). Then there exists a functor [6; p. 190]

f!:D+(Y)--&#x3E;D+ X) with the following properties:

6.1: (We denote the derived functors Rf*, Lf* and ~)
f 9 

(i) For every composition X 20132013&#x3E; Y 20132013&#x3E; Z of projective embed-
dable morphisms there is an isomorphism of functors (g . fl’ =
f !g!.
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(ii) For every flat base extension u : Y’ - Y there is an isomor-

phism v*f! = g!u* where v and g are the two projections of
X x y Y’.

(iii) Let D:C(Y)/Td be the subcategory of Dqc(Y) generated by the
bounded complexes of finite Tor-dimension [6; p. 97]. There is
a functorial isomorphism f’(F°) @ Lf*(G°) * f’(F° @ G°) for

F’ E D;c( Y) and G E D:c( Y)¡Td [6; p. 194].
(iv) Let F» EE Dqc(X) and G. e Dq+c(Y). There exists a duality

isomorphism [6; p. 210]:

(v) Assume that f is a fiat morphism of Gorenstein schemes of
relative dimension m. Then there exists an invertible sheaf wxjy
such that /’(0y) is isomorphic in D;c(X) to the complex
wxjy[m] ] (see 6.2(i)) [6; p. 298 and 388].

(vi) Under the assumptions of (v), wxjy is compatible with arbitrary
base change [6; p. 388].

6.2. REMARK:

(i) Let [m] : Dqc(Y) --&#x3E; Dqc( Y) be the functor defined by (G"[m])r =
Gr+m, then [m] is compatible with derived functors. Let G be an
invertible sheaf on Y, considered as the trivial complex having
G at the oth place. Then Lf*(G[m]) == (Lf*G)[m] == (f*G)[m]
and for FE D;c(Y) we have FO @ G[m] == (F. @ G)[m] ==
(F’ @ G)[m] where (FO @ G)r = Fr @ G. Under these con-

ditions the isomorphism in 6.1 (iii) reduces to (f ’(F°) (x) f*(G))[m] =
f’(F° @ G)[m ].

(ii) If Y = Spec (C) and X is a regular and projective variety, then
wxjy, defined in 6.1 (v), is the usual canonical sheaf on X.

We extend the definition of wxjy given in 6.1 (v).

6.3. DEFINITION: Let f : X -&#x3E;. Y be a surjective and projective em-
beddable morphism of irreducible noetherian schemes whose general
fibre is of dimension m. If f!(Oy ) == G[m] in D;c(X) for an invertible
sheaf G, we say that the dualizing sheaf of f exists and denote

wxjy = G.
Statement C’n,m just says, that the Kodaira dimension of the general

fibre is smaller than the L-dimension of the dualizing sheaf.

6.4. LEMMA: Let h : X - S and g : Y - S be surjective and projective
embeddable morphisms of irreducible noetherian schemes of finite
Krull dimension and let 1 (resp. m) be the dimension of a general fibre
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of h (resp. g). Assume that the dualizing sheaves Wx/s and wyls exist.
Let f : X ---&#x3E; Y be a surjective and projective embeddable morphism over
S. Then úJx/y exists and is isomorphic to wxls @ f*wÇ)s.

P ROOF: We have (6.1(i)) h! = f!g! and from 6.2(i) we get: h!(Os) =
f!(g!(Os) = f!(Oy@oyg!Os) = f!(Oy)@oxf*g!(Os) or wxis[l] =

f!(Oy)@oxf*(úJy/s)[m]. Hence f !(Oy) == (úJx/s@f*wyls)[I- m 1

6.5. COROLLARY: Using the notations from 6.4, we assume that
1 = m, f*(Ox) Oy and Rif*(Ox) = 0 for i# 0. Then there exists an
injection f *wyls ---&#x3E; wxis.

PROOF: The duality isomorphism (6.1(iv)) for i = 0 gives you:

Homx (Ox, f ! Oy) == HOmDqc(Y) (Rf *Ox, Oy) == Homy (Oy, Oy). There-

fore there is a non trivial morphism Ox - f!Oy wxls @ f*úJ-;’;s.

6.6. COROLLARY: Using the notations from 6.4, we assume 1 = m

and f finite and birational. Then there exists an injection

PROOF: We know that Rif *G = 0 for j~ 0 and any invertible sheaf
G on X. The duality isomorphism for i = 0 gives Homx (wx/y, wx/y) ==
Homy (f *úJx/y, Oy). Therefore 0 # Hom y (f *úJx/y, f * °x) ==
Homx (f* f *wx/y, Ox). Since f is affine and birational there is a sheaf E
with support in codimension 1 such that 0 --*,E --&#x3E; f *f *wx/y --- &#x3E;,wxly ---&#x3E; 0 is
exact. We have Homx (e, Ox) = 0 and hence

0 0 Homx (f*f *úJx/y, Ox) Homx (wxjy, Ox).

We want to apply these results to the situation described in §5.
Remember, in the conclusion of 5.1 we got a diagram of projective
morphisms of projective Gorenstein schemes (5.3):

From 6.1(v) and 6.4 we know that for every morphism of this diagram
the dualizing sheaf exists. The following proposition reduces the
proof of Cn,n-1 to the case of stable curves.
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6.7. PROPOSITION: Using above notations we have:

PROOF: Using 5.3(ii) it follows that the assumptions of 6.5 are

fulfilled for

and hence the first inequality follows from 1.3(ii) and (iii). The left
hand side of the diagram can be written as:

Where h = hi . h2. Since g is a flat morphism of Gorenstein schemes
(5.3) we know from 6.1(vi) that úJVt/v == P*úJw’/w. The assumptions of
6.6 are fulfilled by h2 and we get: wv,jv @ 03C0* w-1W’/W ~ wvnv, ~ Oy and
therefore wv,jw, * &#x26;v,jv @ qr’*w$,j/ @ h *wvjw - h *wvjw. Now thé se-
cond inequality holds by 1.3(ii) and (iii).

§7. The dualizing sheaf for stable curves

For g ~ 1 and p, &#x3E;_ 3 let M = At:) be the fine moduli scheme of
stable curves with level 03BC-structure and p : Z ~ M the corresponding
universal curve. Let Mo ç M be the open subscheme corresponding to
the regular curves, w = wzjm and D = /Bgp*úJ.

7.1. PROPOSITION: K (@, M) = dim (M) and f or some m&#x3E;0 we

have (see 1.1) tPm,0)IMo is a finite morphism of Mo on a subscheme of
pN.

PROOF OF 7.1 FOR g = 1: We know (2.6) that M is a curve and that
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p : Z - M is not smooth. From 3.6 we get deg D &#x3E; 0 and hence D is
ample on M.

7.2. REMARK: As far as the author knows, proposition 7.1 for g &#x3E; 2
will follow from the announced proof of the projectivity of Mg by
Knudson and Mumford (see [14]). In §3 we have already seen, that D
behaves like an ample sheaf: Every curve in M whose general point
is contained in Mo has a positive intersection number with D. It seems
reasonable that D is a good candidate (after some correction along
the boundary of Mo), if you are looking for an ample sheaf on M.

Nevertheless, we give the outline of a proof of the weaker state-
ment of 7.1, using analytic methods which can be found in [2] and

[15]. Namikawa constructed in [15] a holomorphic morphism from Mg
into a projective space, which is an injection on Mgo. We just have to
show that the induced morphism of M is given by global sections of
D~m for some m. This follows, however, from the methods used by
Arakelov to prove [2; Theorem 1.1]:

PROOF OF 7.1 FOR g&#x3E;2: Henceforth we will use the complex
topology of M and Z. For sufficiently small U C Mo we can find
cycles â1, ..., âg and Qi, ..., eg in R1p*Z such that for every t E U

the induced cycles (via duality) alt, ..., «gt, {3It,..., (3gt in HI(ZT, Z)
have the property:

We may assume that p*w is free over U. Let wl, ..., cvg be a basis of

p*w on U and define:

Both are holomorphic in t, and by replacing w,, ..., (o, by another
basis of p*w we may assume that 03A92(t, W1, ..., cvg) is the unit matrix
for all t E U. Then !J1(t) = n 1(t, w1,......, úJg) is called the period matrix
of the fibre Z,.

For m &#x3E; 0 let s1, ..., sr be a basis of the vector space of Siegel
modular forms of weight m and define q = (wi A ’ ’ ’ n úJg)@m. Then
Si(!J1(t)) . n defines a section of D~m on the open set U.

If we choose a second system of cycles â1, ..., âg, i3 11, ..., jS’ 9 and a
basis of P*úJ, normalized as above, it follows easily that the section
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Si(i11(t)) . n remains unchanged. Hence we get global sections

yl, ..., yr of S on Mo which don’t vanish simultaneously. The cor-
responding holomorphic morphism Mo__&#x3E; pr-, is the same as con-

structed in [15]. Hence it factors through the coarse moduli scheme

Mgo, and the induced morphism M,,---&#x3E;P"-’ is an embedding.
It remains to show that the sections y,, ..., yr extend to sections of

D~m over M and are not simultaneously zero on the boundary of Mo.
Let U’ be a small neighbourhood of a point y E M - Mo in M. Since
the sections yi are locally obtained from sections of the cor-

responding sheaf on the Hilbert scheme of three canonically em-
bedded stable curves [15] we may assume that U’ is regular. Using
Hartog’s theorem it is enough to show that the yi extend to holomor-
phic sections of D~m along a general line through y. This, however, is
proven in [2; proof of 1.1]: Arakelov applies the same construction to
abelian varieties over a curve, but [2; Lemma 1.4] gives the con-
nection to the case we consider.

§8. The proof of C’n,n-1 and 1.8

Let irl: V, &#x3E; W, be a surjective morphism of proper, regular
varieties, n = dim (V,) and n - 1 = dim (W1), such that the general
fibre of 1T1 is a connected curve of genus g - 1.

Choose a diagram of morphisms of proper schemes as in 5.1. Let
cp : W --&#x3E; Mg be the rational map induced by the general fibres of 1T (or
1T1)’ Let ~s : W’--&#x3E; M;) be the morphism corresponding to 1Ts : V, --&#x3E; W’.
Then dim (ç( W)) = dim (CPs(W’)). We have to prove (1.8) :

8.2. LEMMA: (8.1) follows from K(úJvs/w’, VS ) &#x3E; dim (CPs(W’)).

PROOF: The above inequality and 6.7 give us K(wv/w, V
dim (CPs(W’)) and hence we have only to consider the case g - 2 and
dim (CPs(W’)) = 0. This, however, means that there is a regular curve C
of genus g over C such that Vs == C xSpec(C) W’ and 1.3(ii), 1.5 and 6.7

give us the inequality we need.

Now 7Ts*úJvs/w’ and hence 1B g 7Ts*úJvs/w’ are compatible with base
change. Therefore (using the notation of 7.1) 1B g 7Ts*úJvs/w’ = cpffi.
Since CPs maps an open subscheme of W’ into Mo, 7.1 yields
K( A 9 7Ts*úJvs/w’, W’) - dim (CPs(W’)). In 2.10 we proved that there is an
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injection

and 1.3(iii) and (ii) prove K(úJVsIW" VS) &#x3E; dim (CPs(W’)).
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