@article{CM_1978__37_1_103_0, author = {Buchner, Michael A.}, title = {The structure of the cut locus in dimension less than or equal to six}, journal = {Compositio Mathematica}, pages = {103--119}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {37}, number = {1}, year = {1978}, mrnumber = {501100}, zbl = {0407.58008}, language = {en}, url = {http://archive.numdam.org/item/CM_1978__37_1_103_0/} }
TY - JOUR AU - Buchner, Michael A. TI - The structure of the cut locus in dimension less than or equal to six JO - Compositio Mathematica PY - 1978 SP - 103 EP - 119 VL - 37 IS - 1 PB - Sijthoff et Noordhoff International Publishers UR - http://archive.numdam.org/item/CM_1978__37_1_103_0/ LA - en ID - CM_1978__37_1_103_0 ER -
%0 Journal Article %A Buchner, Michael A. %T The structure of the cut locus in dimension less than or equal to six %J Compositio Mathematica %D 1978 %P 103-119 %V 37 %N 1 %I Sijthoff et Noordhoff International Publishers %U http://archive.numdam.org/item/CM_1978__37_1_103_0/ %G en %F CM_1978__37_1_103_0
Buchner, Michael A. The structure of the cut locus in dimension less than or equal to six. Compositio Mathematica, Tome 37 (1978) no. 1, pp. 103-119. http://archive.numdam.org/item/CM_1978__37_1_103_0/
[1] Stability of the cut locus in dimensions less than or equal to six. Inventiones Math., 43 (1977) 199-231. | MR | Zbl
:[2] Triangulation of the Real Analytic Cut Locus. Proc. of the A.M.S. Vol. 64, No. 1, May 1977. | MR
:[3] Oscillatory integrals, Lagrange immersions and unfoldings of singularities. Comm. Pure Appl. Math., vol. XXVII (1974) 207-281. | MR | Zbl
:[4] Stability of C∞ mappings II. Infinitesimal stability implies stability. Ann. of Math. vol. 89 (1969) 254-291. | Zbl
:[5] Stability of C∞ mappings, IV; Classification of stable germs by R-algebras. IHES No. 37 (1969) 223-248. | Numdam | Zbl
:[6] Stability of C∞ mappings, V, transversality. Advances in Mathematics, 4 (1970) 301-336. | Zbl
:[7] Connections between differential geometry and topology: I. Simply connected surfaces. Duke Math. J., 1 (1935) 376-391. | JFM | MR | Zbl
:[8] Connections between differential geometry and topology: II. Closed surfaces. Duke Math. J., 2 (1936) 95-102. | JFM | MR | Zbl
:[9] Cut loci in Riemannian manifolds. Tohoku Math. J. Second Series 26 (1974) 219-227. | MR | Zbl
:[10] Trans. Amer. Math. Soc., 6 (1905) 243. | JFM
:[11] A regularity theorem for conservation laws. Advances in Mathematics 11 (1973) 368-386. | MR | Zbl
:[12] Temporal evolution of catastrophes in Topology and its Applications, edited by S. Thomeier. Marcel Dekker, Inc. N.Y. | MR | Zbl
:[13] Stability of unfoldings. Lecture Notes in Mathematics 393 (1974). | MR | Zbl
:[14] The cut locus and conjugate locus of a Riemannian manifold. Ann. of Math., 87 (1968) 29-41. | MR | Zbl
:[15] On the covering of a complete space by the geodesics through a point. Ann. of Math., 36 (1935) 679-704. | MR | Zbl
:[16] La théorie des catastrophes iv. Déploiments universels et leurs catastrophes. Ann. Inst. Henri Poincaré, Vol. XXIV, No. 3 (1976) 261-300. | Numdam | MR | Zbl
, and :[17] The existence of nontriangulable cut loci. Bull. Amer. Math. Soc., 82 (1976) 599-602. | MR | Zbl
, :