@article{CM_1978__37_3_243_0, author = {Kalton, N. J.}, title = {The three space problem for locally bounded $F$-spaces}, journal = {Compositio Mathematica}, pages = {243--276}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {37}, number = {3}, year = {1978}, mrnumber = {511744}, zbl = {0395.46003}, language = {en}, url = {http://archive.numdam.org/item/CM_1978__37_3_243_0/} }
TY - JOUR AU - Kalton, N. J. TI - The three space problem for locally bounded $F$-spaces JO - Compositio Mathematica PY - 1978 SP - 243 EP - 276 VL - 37 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - http://archive.numdam.org/item/CM_1978__37_3_243_0/ LA - en ID - CM_1978__37_3_243_0 ER -
Kalton, N. J. The three space problem for locally bounded $F$-spaces. Compositio Mathematica, Tome 37 (1978) no. 3, pp. 243-276. http://archive.numdam.org/item/CM_1978__37_3_243_0/
[1] Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18 (1942) No. 10. | MR | Zbl
:[2] A convexity condition in Banach spaces and the strong law of large numbers. Proc. Amer. Math. Soc. 13 (1962) 329-334. | MR | Zbl
:[3] Über Vererbbarkeitseigenschaften in topologischen Vektorräumen, Dissertation, Munich 1974.
:[4] On the 'three space problem'. Math. Scand. 36 (1975) 199-210. | MR | Zbl
, and :[5] On a convexity condition in normed linear spaces. Trans. Amer. Math. Soc. 125 (1966) 114-146. | MR | Zbl
:[6] Orlicz sequence spaces without local convexity (to appear). | MR | Zbl
:[7] Quotients of Lp(0, 1) for 0 ≤ p < 1 (to appear). | Zbl
and :[8] Bases and basic sequences in F-spaces. Studia Math., 61 (1976) 47-61. | MR | Zbl
and :[9] l1 as a quotient space over an uncomplemented line (to appear).
:[10] On certain classes of linear metric spaces. Bull. Acad. Polon. Sci. 5 (1957) 471-473. | MR | Zbl
:[11] Some remarks on the spaces N(L) and N(l). Studia Math. 18 (1959) 1-9. | MR | Zbl
:[12] Some properties of lp, 0 < p < 1. Studia Math. 42 (1972) 109-119. | MR | Zbl
:[13] Convexités dans les espaces vectoriels topologiques generaux, Diss. Math. No. 131, 1976. | MR | Zbl
: