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1. Introduction and summary

1.1. The complete story of the Hawkins sieve can now be told. (But
see § 1.3.) Even though we follow Neudecker-Williams [5] closely, we
shall for the reader’s convenience make the present paper a self-

contained treatment of the Hawkins sieve.

The Hawkins sieve (see [9] for ’Eratosthenes’ motivation and some
of the history) operates inductively as follows. Let

(We use the symbol ’=’ to signify ’is defined to be equal to’.)

Stage 1. Declare XI = min AI. From the set A1B{X1}, each number in
turn (and each independently of the others) is deleted with probability
X1-1. The set of elements of Ai)(Xi) which remain is denoted by A2.

Stage n. Declare Xn = min An. From the set AnB{Xn}, each number
in turn (and each independently of the others) is deleted with prob-
ability X n’. The set of elements of AnB{Xn} which remain is denoted
by Anll-
We regard Xn as the nth ’random prime’ and introduce the

’Mertens’ product

Wunderlich ([10]) proved that, almost surely,
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Neudecker and Williams ([5]) proved that, almost surely, the

(random) limit

exists in (0, oo), showed that

should be regarded as the ’error in the prime-number theorem’, and
established that, almost surely, the ’Riemann hypothesis’:

Convention. The constant repetition of ’almost surely’ phrases
would become tiresome. We shall therefore suppress them and regard
exceptional null sets as deleted from the sample space. Readers

concerned with ’rigour’ can do a preliminary check at this stage to see
that the number of results on the Hawkins sieve in this paper is at

most countable.

We now state our main result in direct intuitive form, mention some
corollaries, and then clarify what is meant by ’expanding the sample
space’.

THEOREM 1: The sample space on which the Hawkins sieve is

defined may be expanded so as to carry a Brownian motion B =

f Bt : t &#x3E;0} such that

It really is hard to think what more needs to be said, except for
discussion (see § 1.3) of behaviour conditional on L. Theorem 1 is of
course the appropriate ’Strassen invariance principle’ for the Hawkins
sieve. The 0(-) term in (1.5) is the ‘natural’ one, but we have to work
quite hard to obtain the very crucial (log n) in the denominator. The
main point of Theorem 1 is of course that it allows us to transfer to
the E process nearly all of the known big theorems for Brownian
motion - and especially Strassen’s momentous improvement of the
classical iterated-logarithm law.

Set E0 = 0 and extend Et from {0, 1, 2, ...} to [0, oo] by linear

interpolation. Introduce the Banach space C[O, 1] with its usual

supremum norm. For each n &#x3E; 3, the formula
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defines an element f" of C[0, 1]. Because of Theorem 1, Strassen’s
law for B now implies that (almost surely) the set of accumulation
points in C[O, 1] of the sequence (fn : n &#x3E; 3) is exactly the compact
subset K of C[O, 1] consisting of functions g in C[O, 1] such that

(i) g (0) = 0,
(ii) g is absolutely continuous (with derivative g’ existing almost

everywhere),
(iii) 1[0.1] g’(t)2dt s 1.

Freedman’s book [1] has a nice account of Strassen’s law. For

reference, let us record the law via the shorthand:

Equation (1.6) gives us very precise information on the fluctuations
of the sequence (En). In particular, it allows us to improve the result
(1.4) to the form:

Of course, (1.7) follows from Theorem 1 and the classical iterated

logarithm law, but it is best seen as following from (1.6) because of
the easily verified fact that

sup{g(I): g E K} = 1.

CLARIFICATION OF THEOREM 1: Results like (1.6) and (1.7) are of
course true without ’expanding the sample space’. As far as those
results are concerned, Theorem 1 is only a means to an end. However
Theorem 1 is the story of the Hawkins sieve in a nutshell and needs
to be properly explained. The idea of expanding the sample space is
crucial in all Skorokhod I...I Strassen invariance-principle theory,
and seems to be an essential means for getting to (1.6).
The sequence (Xn : n EN) of Hawkins primes is defined on some

probability triple (t2, 9, P). Theorem 1 states that there exists a new

probability triple (n, #, P) supporting both a Brownian motion

IB,: t &#x3E; 0} and a sequence (Xn: n EN) of random variables such that
(i) the P law of the sequence (Xn: n EN) is identical to the P law

of the sequence (Xn : n EN) ;
(ii) Ên = B" + O([n log log n ]1/2/10g n ).

Here Ên is the ’error in the prime-number theorem for Xn’ defined via
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the ’hatted’ versions of Equations (1.2), (1.3).
High-falutin’ (’pull-back’) considerations allow us to reiriterpret this

formulation in the more intuitive language of Theorem 1, but you can
always switch to the ’hatted’ formulation if you prefer.

1.2. It was noted in [9] that the stochastic structure of the Hawkins
sieve may be conveniently described as follows. Write

for the smallest u-algebra with respect to which all variables Xm, y m
with m  n are measurable. Then it is easily verified that the process
((Xn, Yn): n E N} is Markovian with

From elementary properties of the geometric distribution, we now
read off :

Because of (1.9.i), the process {Sn : n EN} is a martingale. We derive
all of our results from the ‘Strassen’ properties of this martingale. We
shall be able to check very easily that Theorem 1.3 of Strassen [7]
implies that the sample space of the Hawkins sieve may be expanded
so as to carry a Brownian motion {Bt: t &#x3E; 0} such that

Theorem 1 then follows from the following result.

THEOREM 2:
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1.3. The complete story of a piece of mathematics can never be
told.

The fact that L is random and involves the entire history of the
process X makes Theorem 1 rather unsatisfactory. An exactly similar
situation occurs in branching-process theory in connection with the
’lag’ L of the Galton-Watson process. The very nice solution there
(see Kendall [2]) is to condition the process by the value of L. It

would be plain silly to attempt this for the Hawkins sieve itself. The
thing to do is to switch attention to the diffusion sieve of [9]. B y now,
we are fully entitled to expect even delicate results for the diffusion
sieve to transfer to the Hawkins sieve. But perhaps we should reverse
our thinking! Kronecker himself would be prepared on this occasion
to regard the integer Hawkins sieve as a rather clumsy approximation
to the diffusion sieve. Equation (1.11) shows how hard the Hawkins
sieve strives for perfection.
The reader who wishes to proceed directly to the proofs of

Theorems 1 and 2 can do so at this stage. The remainder of this
section takes (say) Chapters 1-3 of McKean [4] for granted.
From (1.8) and (1.10), we obtain

These equations suggest that (as in [9]) we take for the ’diffusion
sieve’ a solution

of the stochastic differential equations:

where (x, y) is a fixed point of (0,00)2, B is a given Brownian motion,
and C denotes the escape-time from (0, oo)2.

Let us now quote some of the main results of [9] and supplement
them with the analogue of Theorem 2 (the proof of which the reader
can easily supply once he has seen the proof of Theorem 2 itself). The
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limit

exists in [0, oo), and one of the following two alternatives (I) and (II)
occurs.

(Note that the Brownian motion B in (1.15) is the same Brownian

motion as is given in (1.14). Thus (1.15) is the analogue of Theorem 2,
the distinction between S and B having evaporated).

Further

and on (0, oo), the distribution of L has the density

where we have used the shorthand

and where Il is the usual Bessel function of imaginary argument.
Equation (1.16) follows on inverting the Laplace transform in Equa-
tion (1.6) of [9].
From the point of view of diffusion theory, Equation (1.15) looks

rather strange because E, is not non-anticipating and therefore can
not be ’differentiated stochastically’. This difficulty is removed by the
operation of ’conditioning on L’.

It is easily checked (recall Doob’s h-1 Dh formula) that the law of
the process D conditioned by the value (assumed strictly positive) of
L is described by the new stochastic differential equations:

here B denotes ’some’ Brownian motion.
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We content ourselves now with pointing out that the new ’condi-
tioning’ term involving hL is awkward not only in appearance but also
in substance. We find that for the conditioned diffusion,

and this represents good behaviour from the point of view of random-
evolution theory.( See, for example, Pinsky [6], Stroock [8].) The
usual ’second-order’ Itô correction term characteristic of stochastic

differential calculus proves of order 0(t-1/2 ) and is therefore harmless.
However, one can check from the well-known fact:

that the conditioning hL term is definitely not 0(t-1/2). Hence, if the
conditioning proves harmless in the sense that E, remains ’ap-
proximately Brownian’, it is because of cancellation effects. We leave
this point aside for now.
The above discussion should have made the reader aware of the

fact that stochastic calculus seems incapable of providing a neat

proof of (1.15). The reader should therefore take the trouble to prove
(1.15) for himself, by transferring our proof of Theorem 2 or other-
wise.

2. Proof of Theorems 1 and 2

2.1. We need to (re-)establish first the estimates:

and for these, we simply paraphrase the arguments of [5]. As remar-
ked earlier, Wunderlich was the first to prove (2.1.i), but his method is
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unnecessarily complicated. The results (2.1.i) follow immediately
from the following two propositions and (1.13.ii).

Then the (random ) limit

exists.

(Recall that Yn 2= 2, Vn.) By the (elementary!) Borel-Cantelli Lemma,

It is now clear that once (2.1.i) is established, (2.1.ii) will follow. (See
(1.10.i), (1.13.ii).) Because the martingale-differences {( Un+l - 1): n E
N} are orthogonal and

Theorem 33B(ii) of Loéve [3] implies that

PROOF OF PROPOSITION 1, ([5]): If Yn t Y  oo, then we could
conclude from (1.8.iii) that 1 X n’  00 and from ( 1.10.i) and (2.5) that (in
contradiction) n-’Xn --&#x3E; Y.
Thus Yn 1 oo and

so that, from
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PROOF OF PROPOSITION 2, ([5]): Some elementary algebra shows
that

Thus, from (2.3) and Proposition 1,

where G n+1 is the ’stochastic integral’

and H is some random variable. (We shall often use the fact that a
’sum to n terms’ is the ’sum to infinity’ minus the ’tail’.) An easy
exercise in partial summation, utilising Proposition 1, (2.3) and (2.5), 

_

now shows that

exists. Then C exists and C = G + H.

2.2. PROOF OF (1.11): Let V be the variance process of the

martingale S; that is, put

Then, by (2.4),

(2.9)

Use the notation

where e is a random variable and ll is a subset of f2 with indicator

function IA. Theorem 1.3 of Strassen [7] states that if f (u ) ~ on (b, oo),
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then the sample space may be extended to support a Brownian

motion B such that

Because of the Schwarz inequality, the trivial estimate

and estimate (2.2), we see that (2.10) is guaranteed provided that

Because of (2.9), (2.11 ) will hold if f(u) = 5(log U)2.
Property (1.11) therefore holds. Note the important consequence

that

2.3. All that remains is to prove Theorem 2. The next step is to

prove a result which improves both Proposition 2 of this paper and
Proposition 2 of Neudecker-Williams [5] in which the error term was
O(n -1/2+E).

PROPOSITION 3:

NoTE: This result is the exact analogue of the diffusion result (2.8) in
[9] which is best possible.

PROOF: It is ’clear’ that Proposition 3 must follow on applying partial
summation to (2.7) using the improvement (2.12) of (2.5). However, the
’obvious’ attempt fails because the estimate
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is best possible and is ’too big’ by an ali-important factor log r. The
source of the trouble is that though Xn ~ n log n, the best bound for
X n+1- Xn is 0(log n)2, while the derivative of x log x is 0(log x). What
we must do therefore is to use partial summation twice.

Starting with (2.7) and (2.8), we have (the reader should check that the
upper limit 00 causes no trouble)

where

Introduce the shorthand

From (2.1) and (2.12),

so that

Because X r+l - Xr is always positive and Hr = 0(h,),

Finally,

as required.
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2.4. We now complete the proof of Theorem 2. That Theorem 2
implies Theorem 1 is already proved. Of course,

Hence

from Proposition 3. By using the positivity of X r+, - Xr in exactly the
same way as in the proof of Proposition 3, we obtain

Since

the proof of Theorem 2 is finished.

REFERENCES

[1] D. FREEDMAN: Brownian Motion and Diffusion (Holden-Day, San Francisco,
1971).

[2] D.G. KENDALL: Branching processes since 1873, J. London Math. Soc. 41 (1966)
385-406.

[3] M. LOÉVE: Probability Theory (van Nostrand, Princeton, N.J., 1963).
[4] H.P. McKEAN: Stochastic Integrals (Academic Press, New York-London, 1969).
[5] W. NEUDECKER and D. WILLIAMS: The ’Riemann hypothesis’ for the Hawkins

random sieve, Compositio Math. 29 (1974) 197-200.
[6] M. PINSKY: Differential equations with a small parameter and the central limit

theorem for functions defined on a Markov chain, Z. Wahrscheinlichkeitstheorie 9
(1968) 101-111.



289

[7] V. STRASSEN: Almost sure behavior of sums of independent random variables
and martingales, Proc. 5th Berkeley Symp., Vol. 2, part 1 (1966) 315-343.

[8] D.W. STROOCK: Two limit theorems for random evolutions having non-ergodic
driving processes, (to appear in proceedings of Park City, Utah conference on
stochastic differential equations).

[9] D. WILLIAMS: A study of a diffusion process motivated by the sieve of Eratos-
thenes, Bull. London Math. Soc. 6 (1974) 155-164.

[10] M.C. WUNDERLICH: The prime number theorem for random sequences, J.

Number Theory 8 (1976) 369-371.

(Oblatum 24-1-1977) University of St. Andrews,
St. Andrews, Scotland.

University College of Swansea,
Swansea, Wales.

Added in proof

We are very pleased to report that this paper has helped motivate a
much deeper one by H. Kesten entitled "The speed of convergence of a

martingale" (to appear).


