On a conjecture of M. E. Watkins on graphical regular representations of finite groups
Compositio Mathematica, Volume 37 (1978) no. 3, p. 291-296
@article{CM_1978__37_3_291_0,
     author = {Babai, L\'aszl\'o},
     title = {On a conjecture of M. E. Watkins on graphical regular representations of finite groups},
     journal = {Compositio Mathematica},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {37},
     number = {3},
     year = {1978},
     pages = {291-296},
     zbl = {0401.20004},
     mrnumber = {511746},
     language = {en},
     url = {http://www.numdam.org/item/CM_1978__37_3_291_0}
}
Babai, László. On a conjecture of M. E. Watkins on graphical regular representations of finite groups. Compositio Mathematica, Volume 37 (1978) no. 3, pp. 291-296. http://www.numdam.org/item/CM_1978__37_3_291_0/

[1] G.D. Godsil: Neighbourhoods of transitive graphs and GGR's, preprint, University of Melbourne (1978).

[2] D. Hetzel: Graphical regular representations of cyclic extensions of small and infinite groups (to appear).

[3] W. Imrich: Graphs with transitive Abelian automorphism groups, in: Comb. Th. and Appl. (P. Erdös et al. eds. Proc. Conf. Balatonfüred, Hungary 1969) North-Holland 1970, 651-656. | Zbl 0206.26202

[4] W. Imrich: Graphical regular representations of groups of odd order, in: Combinatorics (A. Hajnal and Vera T. Sós, eds.), North-Holland 1978, 611-622. | MR 519296 | Zbl 0413.05017

[5] M.E. Watkins: On the action of non-abelian groups on graphs. J. Comb. Theory (B) 1 (1971) 95-104. | MR 280416 | Zbl 0227.05108

[6] M.E. Watkins: Graphical regular representations of alternating, symmetric, and miscellaneous small groups, Aequat. Math. 11 (1974) 40-50. | MR 344157 | Zbl 0294.05114

[7] M.E. Watkins: The state of the GRR problem, in: Recent Advances in Graph Theory (Proc. Symp. Prague 1974), Academia Praha 1975, 517-522. | MR 389657 | Zbl 0333.05109