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0. Introduction

The central theme of this paper is the basic study of smooth
families of projective hyperelliptic curves parametrized by locally
noetherian base schemes. However, a certain number of general
features of smooth families of curves have been included. Among
these is a fairly thorough study of the formation of quotients with
respect to finite groups. One purpose of this paper has been to

prepare the way for the construction of various kinds of moduli

spaces for hyperelliptic curves to be carried out in a forthcoming
paper by O.A. Laudal and the first author.
The main problem concerning families of hyperelliptic curves is to

single out those families that deserve to be named hyperelliptic
families. A priori this may be done in several ways, each of which is a
generalization of one of the classical characterizations of hyperelliptic
curves over algebraically closed field. The point is to prove that the
ways are equivalent.
There is no restriction on the characteristics of the residue fields. In

particular, characteristic 2 has been included at all stages. As a

consequence we have been obliged to renounce the use of (hyperel-
liptic) Weierstrass points as a basic technical tool, so they do not
emerge until the last section.

The material is organized as follows:

1. Conventions.
2. Image of a finite morphism.
3. Generalities on families of curves.

4. Quotients by finite groups.
5. Hyperelliptic families of curves.

* Partially supported by the Danish National Research Council under grant no. MPS
7407275. Guest at Copenhagen University, som skal have mange tak.
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6. The Weierstrass subscheme.
7. Hyperelliptic Weierstrass sections.
A. Appendix: Rudiments of a general base change theory.

In section 2 we introduce the notion of co-flat morphisms of

schemes. This is particularly useful when the morphism is finite, in
which case it is closely related to the formation of a scheme-
theoretical image (Prop. 2.6). Section 3 starts with the study of the
structure and cohomology of families of curves of genus zero. Then
we give a cohomological characterization of the dualizing sheaf on an
arbitrary family of smooth projective curves (Prop. 3.8).

In section 4 we first consider a (noetherian) ring R and a finite
group G that acts on an R-algebra A. We introduce a subring ~GR (A)
of the ring of invariants A’, called the ring generated by the G-
symmetric functions over R. In the case where ~GR (A) = AG, it turns
out that the formation of A’ commutes with base change. On the
scheme level one has the corresponding notion, and it is proved that
for a smooth family of quasi-projective curves the corresponding
equality always holds, provided the group acts faithfully in the fibers
(Theorem 4.12).
The study of hyperelliptic curves begins in section 5. The starting

point is the characterization of a hyperelliptic curve defined over a
field by means of the canonical map, i.e., the map defined by the
canonical divisor. It is proved that a suitable generalization of this to
a family is equivalent to the family being a double covering of a
family D of curves of genus zero, and to the existence of a global
canonical involution (Theorem 5.5). A family of curves that satisfies
these equivalent conditions is called a hyperelliptic family. It is

proved that the family D and the double covering of D are unique up
to automorphism of D (Cor. 5.10).

In section 6 we define the Weierstrass subscheme of a hyperelliptic
family of curves as the branch locus of the canonical morphism, with
the usual scheme structure. It also equals the branch locus of the
double covering of D, and (as a special case of the Riemann-Hurwitz
formula) we show that it has the expected properties (Prop. 6.3).

In section 7 we finally introduce the notion of hyperelliptic Weier-
strass sections that generalizes the classical concept of hyperelliptic
Weierstrass points. We prove that a family of curves is hyperelliptic
if and only if it acquires a hyperelliptic Wierstrass section after a
faithfully flat base change. Furthermore, all sections of the Weier-
strass subscheme are hyperelliptic Weierstrass sections (Theorem
7.3).
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The paper closes with an appendix due to the second author, who
wishes to express his gratitude to Daniel Grayson for pointing out
some oversights in a preliminary version. The appendix contains part
of a general base change theory presented in a series of lectures given
at the University of Copenhagen in May, 1977.

1. Conventions

We freely use the terminology and the results of Grothendieck ([6]).
For simplicity all schemes are assumed locally noetherian and all

morphisms of schemes are of finite type, unless the contrary is

explicitly mentioned. Recall that a geometric point s of a scheme S is
a morphism Spec(k) --- &#x3E; S (not necessarily of finite type), where k is an
algebraically closed field. The inverse image of a sheaf F of Os-
Modules by this morphism will be denoted by F(s), whereas pull-
backs to an S-scheme T of a relative situation over S will be denoted

by lower subscripts T.
A morphism p : C ---&#x3E; S is called a smooth family of projective curves

of genus g if p is smooth and projective and the geometric fibers of p
are connected curves of genus g. It is well-known that it makes no

difference to replace the word "projective" by "proper" in this

connection when g a 2, (see e.g. [3]).
In section 4 we shall call a ring extension A C B quasi-finite

provided all the fibers of Spec B --&#x3E; Spec A are finite. Thus, we drop
the usual extra condition that B be essentially of finite type over A
(cf. [6, II. 6.2.3]).

2. Image of a finite morphism

Let S be a locally noetherian scheme, and let X and Y be

S-schemes of finite type. Associated to an S-morphism f : X ~ Y we
have the co-morphism cf: Cy - f* Ox. Put L = Coker(Cf). We then have
an exact sequence of quasi-coherent Oy-Modules,

LEMMA 2.2: If the morphism f above is affine, then the formation of
the exact sequence (2.1) commutes with base change on S.

PROOF: The condition on f ensures that f*F commutes with base
change for any quasi-coherent sheaf F of Ox-Modules, so the lemma
follows from the right-exactness of pull-back..
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Consider now a finite S-morphism f : X ---&#x3E; Y. The scheme-theoreti-
cal image of f, Im(f ), is defined to be the closed subscheme of Y with
Ideal Ker(f ). From (2.1) we may form two short exact sequences:

Since f is proper these sequences consist of coherent Oy-Modules.

DEFINITION 2.5: An S-morphism of finite type f : X ~ Y will be
called co-flat if L = Coker(Cf) is S-flat.

PROPOSITION 2.6: Let f : X --&#x3E; Y be a finite S-morphism, and assume
that X is S-flat. Then f is co-flat if and only if the image Im(f) is

S-flat and its formation commutes with base change on S.
Furthermore, when f is co-flat, then the canonical morphism X---&#x3E;

Im(f) is flat if and only if the corresponding morphism is flat for every
geometric fiber over S.

PROOF: Let T ~ S be a morphism, and let

induced morphism. Then the exact sequence

is canonically isomorphic to

by Lemma 2.2. We again form two short exact sequences:

The image lm(ft) is the pull-back of Im( f ) to T precisely when (2.8) is
obtained by applying ç* to (2.3).
Assume first that f is co-flat. Since f is affine, f*Ox is S-flat and

(2.4) shows that 01.(f) is S-flat. Therefore, ç* applied to (2.3) and (2.4)
yields the short exact sequences (2.8) and (2.9). Hence Im(f ) is S-flat
and commutes with base change.
Suppose next that Im(f ) is S-flat and that its formation commutes

with base change. This implies that the homomorphism OIm(f)~ f*Ox is
universally injective, cf. Cor. A.2, so the quotient L is S-flat, i.e., f is
co-flat.

The last assertion is a special case of the following.

LEMMA 2.10: Let f: X ~ Y be an S-morphism of flat S-schemes.
Then f is flat if and only if fs : Xs ~ Y, is flat for all geometric points s
of S.
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PROOF: This is a special case of [6, Cor. IV. 11.3.11 ] . ·

REMARKS 2.11: (a) If in addition we assume Y to be S-flat in Prop.
2.6, the proof of the first assertion may be reduced to general base
change theory as follows: Consider the complex

of coherent Oy-Modules, flat over S. The first cohomology group is L,
which commutes with base change. The zero’th cohomology group is
the Ideal J of Im(f ). So, by Prop. A.8.(ii), J commutes with base
change if and only if L is S-flat.

(b) With the same notation as in Def. 2.5 we observe that f is

co-flat if and only if f has a co-flat pull-back to some faithfully flat
Y-scheme, not necessarily of finite type.

EXAMPLES 2.12: (1) A closed S-embedding X4 Y is co-flat.
(2) Assume that X is S-flat. Then a finite, flat S-morphism f : X - Y

is co-flat. In order to prove this, one may assume that f is surjective,
since it maps X onto an open and closed subset of Y. The question is
then local on Y, and it follows from this: Let A - B be a faithfully
flat, finite ring homomorphism of noetherian rings. Then A is a direct
summand in B, i.e. B/A is A-flat, (see [6, Prop. IV.2.2.17]).
For the sake of completeness we include the following result,

which will not be used in the sequel.

PROPOSITION 2.13: Let f : X ~ Y be a finite S-morphism, and

assume that X is S-flat. Then there exists a stratification II Si of S with
the following property: For any S-scheme T --&#x3E; S the image of
fT : XT - YT is flat and commutes with base-change on T if and only if
T --&#x3E; S factors through U Si ~ S.

PROOF: Take for II Si the flattening stratification for L, (see [8,
Lecture 8]), and apply Prop. 2.6. ·

This proposition is an essential step in the construction of the

moduli spaces for hyperelliptic curves that was mentioned in the

introduction.

3. Generalities on families of curves

In this section p : C- S denotes a smooth, projective family of
curves of genus g a 0. Assume first that p has a section e : S- C.
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Then e is a closed embedding. The restriction of the Ideal of Im(e) to
a fiber over S is locally generated by a non-zerodivisor. It follows that
the Ideal of Im(e) is invertible and that Im(e) is the support of an
effective Cartier divisor E on C relative to S, where the invertible
sheaf LE associated to E is given by the exact sequence,

(See [6, IV.21] ] or [8, Lecture 9-10] for details about relative Cartier
divisors.)
We now examine f amilies of curves p : C ---&#x3E; S of genus 0.

DEFINITION 3.2: A smooth, projective family of curves p : C ---&#x3E; S of

genus 0 is called a twisted P 1.
One simple class of twisted projective lines over S consists of the

morphisms P( V) ~ S, where V is a locally free sheaf of rank 2 on S.
We have the following criterion for a twisted P 1S to be of this form.

PROPOSITION 3.3: Let p : C - S be a twisted P 1S. Assume that there
exists an invertible sheaf L on C such that deg L, = 1 for all

geometric points s of S. (This holds with L = LE as above, when p
admits a section e.)
Then C is S-isomorphic to P( V) for some locally free sheaf V on S

of rank 2.

PROOF: Since the geometric fibers of p are projective lines, we
have R’p*L = 0 in the fibers; so V = p*L is locally free and com-
mutes with base change ([16,111.7.8] or [9, section 5]). The Riemann-
Roch formula applied to a geometric fiber shows that rkV = 2. The
natural map p * V ~L is surjective since its restriction to every

geometric fiber is surjective. Let 03A6: C ~P( V) denote the associated
S-morphism. The restriction of 0 to a fiber over S is an isomorphism,
so 0 is quasi-finite. Since 0 is proper, it is finite by Chevalley’s
theorem. The restriction to the fibers of the co-morphism cCP: Cp(v) --&#x3E;

O*Cc is bijective. We conclude that ’0 is bijective, hence that 0 is an
isomorphism, by the following local assertion: Let R - A be a local
homomorphism of local noetherian rings, and let M ~N be an

A-linear map between finite A-modules, where N is assumed fiat over
R. Suppose that the induced map M~Rk~N~Rk is bijective, where
k denotes the residue field of R. Then M- N is bijective. This
assertion follows immediately from Nakayama’s lemma and the

vanishing of TorR(N, k)). ·
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Since a smooth morphism always has a section locally in the étale
topology ([6, IV.17.6.3]), we have

COROLLARY 3.4: For every twisted P1S, p : C- S, there exists an

étale surjective morphism T ~ S such that CT = P1T.

REMARK 3.5: Every twisted P1S gives rise to an element in the

Brauer group of S, Br(S). Therefore, if Br(S) = 0, then every twisted
P1S is of the form P(V) described above. As an example we can
mention that P1 Z itself is the only twisted P1 Z.
Now let p : C- S be an arbitrary smooth family of projective

curves, and let F be a coherent sheaf on C which is flat over S. Then

Rip*F = 0 in the fibers for i ~ 2. Hence Rip*F = 0 for i ~ 2, and

Rlp*F commutes with base change ([6, 111.7.8]). Consequently, p*F
is locally free and commutes with base change if and only if R1p*F is
locally free. Furthermore, the property that R’p*F be locally free and
commute with base change is local on S (for the Zariski topology),
and it may be checked after a faithfully flat base change (i.e., it is

local in the fpqc-topology).

PROPOSITION 3.6: Let p : C - S be a twisted Ps, and let L be an
invertible sheaf on C. Then p*L and R1p*L are locally free and
commute with base change.

PROOF: According to Cor. 3.4 and the remarks above, the proposi-
tion need only be proved for C = IP 1 and under the additional

assumption that S be connected. Since L is flat over S, the integer
n = deg L, is independent of the point s of S. If n ? 0, then R’ p*L = 0
in the fibers, so R1p*L = 0, p*L is locally free, and both commute
with base change. If n  0, then p*L = 0 in the fibers, so p*L = 0,
R’ p*L is locally free, and both commute with base change. ·

REMARK 3.7: When S is connected and C = P(V) in the proposition
above, it is well-known (cf. [6, II.4.2.7]) that there is a unique
expression L = Op(v)(n) Q9 p *M, with nEZ and M an invertible sheaf
on S. This gives a more explicit description of the sheaf p * L which,
however, will not be needed here.
The last topic in this section is a characterization of the dualizing

sheaf on a smooth, projective family of curves.

PROPOSITION 3.8: Let p : C --&#x3E;S be a smooth, projective family of
curves of genus g ~ 0, and let L be an invertible sheaf on C. Then L is
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isomorphic to the sheaf of relative differentials f2 ’ s if and only if it
satisfies the following two conditions :

(i) There exists an isomorphism ç : Os .2*- Rlp*L;
(iiv) For every geometric point s of S one has deg L, = 2g - 2.

Moreover, the choice of an isomorphism ’P determines in a canonical

fashion a specific isomorphism L~ 03A91C/S.

PROOF: It is easy to see that n 1 s satisfies the two conditions, so
assume that L satisfies (i) and (ii). Fix an isomorphism ’P. According
to Prop. 3.6 the sheaf R1p*L commutes with base change; so, by
Grothendieck duality, we get an isomorphism OS~ p*(L -1~03A9 1C/S)
that commutes with base change. The adjoint homomorphism Oc~
L Q9 f2 1 s is injective on the geometric fibers of p, hence universally
injective by Cor. A.2. Consequently the cokernel Q is flat over S.

Consider the exact sequence of S-flat coherent Oc-Modules,

Its restriction to the fiber over a geometric point s of ,S‘ remains exact,
and taking Euler-characteristics shows that X(Q,) = 0. Since the

support of Q, is finite, one has Q, = 0. By Nakayama’s lemma Q = 0,

4. Quotients by finite groups

Let R be a commutative ring and let A denote an R-algebra. For
any finite group G of R-automorphisms of A, we let AG denote the
G-invariant R-subalgebra of A. Every a E A satisfies an integral
equation over A G of the form,

Put n = |G| (the order of G). Denote the coefficient of xn-j in this
equation by (-I)joj(x). In this way we define mappings 03C3j: A~ AG,
j = 0, 1,..., n, that we call the G-symmetric functions on A.

Let s,, ..., sn denote the usual elementary symmetric functions in n
variables xi, ..., xn, i.e.,
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If G = 191, g2, ..., gn} is an ordering of the elements of G, where gi is
the identity, then we have for all a E A

The function ao is the constant map 1, ol = Tr is the trace map, and

an = N is the norm map. Note that Tr is A G-linear, whereas N is
multiplicative.

generated over R by the G-symmetric functions if

EXAMPLE 4.3: If n = |G| is invertible in R, e.g., when R contains a
field of characteristic zero, then ~GR (A) = AG for all finite groups G.
In fact, AG = Tr(A).

We shall occasionally write
confusion is possible.
The fundamental property of 1 (A) is that the base change map on

~ (A) is surjective for any base change R ~R’. More precisely,

PROPOSITION 4.4: Fix R - A and G as above, and let R - R’ be an

R-algebra. Put M’ = M~RR’ for any R-module M. Then one has a
commutative diagram of R’-modules,

where ’P is surjective.
If R’ is a flat R-algebra, then ’P and t/1 are both bijective. Further-

more, if R’ is a faithfully flat R-algebra, then ~R (A) = AG if and only

PROOF: The first row is obtained by tensoring

with R’ over R. An element g E G acts on a 0 r’ E A’ by g(a ~ r’) =

g(a) (D r’. It follows that the natural map AG -+A’ factors through A,G, ,
thus inducing the map t/J: (A G)’ -+ (A’)G. In order to see that the image
of 1 (A)’ in (A°)’ is mapped by 03C8 into E (A’), it suffices to show that
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G-symmetric functions on A. This is clear, since 03C3j(a)~1 =

03C3,j(a Q9 1) e 2 (A’), where uj denote the G-symmetric functions on A’.
This provides us with a map Q:~ (A’)’~~ (A’). To prove the sur-
jectivity of ’P we need the following general lemma, whose proof is
left to the reader.

LEMMA 4.5: Let si(x) denote the j’th elementary symmetric f unctio..
in n variables 9 = (X.,..., xn), and let 6, t),...,3 denote a finite set of
n-tuples of variables. Then Sj(6 + ~ + ... + 3) may be expressed as a
polynomial with integer coefficients in the symmetric functions sk,

k ~ j, where the arguments in the various Sk are monimials in

6, P, - - -, 3, Le., of the form

We continue the proof of Prop. 4.4. The image of Q is an R’-

subalgebra of ~ (A’); so in order to prove that it is all of ~ (A’), it

suffices to prove that it contains the generators of ~ (A’), i.e., the
elements 03C3j(a’) where a’ E A’. When a’ = a ~ r’ one has 03C3,j(a’) =
03C3j(a) ~ r,j, which certainly belongs to Im(Q). For an arbitrary a’ =
~pi= 1i ai ~ ri one has 03C3,j(a’) = uj(al ~ rÍ + ... + ap ~ rp), and it follows

immediately from Lemma 4.5 and the previous arguments that this
element belongs to ~ (A’).
When R’ is flat over R, it is well-known that 03C8 is bijective (see [5]),

and it follows that Q is injective, so bijective by the first part of the
proposition. If R’ is faithfully flat, then ~(A)  ~AG is a bijection if

and only if ~ (A)’ ~(AG)’ is a bijection, so if and only if L (A’) ~ (A,)G
is bijective. ·

Assume for a moment that R is noetherian and that R ~ A is of

finite type. By (4.1), A is integral over ~GR (A), so ~GR(A) is of finite
type over R by Noether’s lemma (see e.g. [13, 111.12. Lemma 10]).
Moreover, A and A G are then finite 1 (A)-modules. In this case the
différence between ~ (A) and AGis relatively small.

PROPOSITION 4.6: Let R - A and G be as described at the beginning
of the section. Then one has

(i) If the extension ~GRis quasi-finite,1 then the natural
map Q : Spec A G ~ Spec ~GR (A) is a homeomorphism.

(ii) If A is a domain and G is a subgroup of AutR(A), then cp is
birational.

1 Cf. section 1.
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PROOF: Assume first that 1 (A) C AG is a quasi-finite extension.
The map cp is surjective and closed since the extension is integral. So
we only need to prove that Q is injective. Recall that the extension
AG C A is always quasi-finite, so in our case the extension 1 (A) C A
will be quasi-finite. Let p be a prime ideal of 1 (A) and let ri,..., rm
be the prime ideals of A that lie over p. Put q = ri ~AG. We may
assume that the r;’s have been numbered in such a way that

rl, r2, ..., rs all contract to q and rs+1,..., rm contract to different

prime ideals of A" if s  m. (This means that Ir,, ..., rj is a set of
conjugate prime ideals of A with respect to G and that {rs+1,..., rml is
a union of sets of conjugate prime ideals.) We claim that s = m.
Assume that s  m. Choose an element u e A such that u E r1, u e r;
for i&#x3E; 1, and set v = N(u) = IIg~G g(u). We have v ~ r1~(A) = p.
Let q’ = rs+l nA . Since g(u) e rs+l for any g E G, we have vË q’.
This contradicts p. AG C q’. Consequently s = m and hence q is the
only prime ideal of AG that lies over p. Thus Q is injective.
Suppose next that A is a domain with fraction field L, and set

K=L G. Then K is the fraction field of AG. Denote the fraction field
of ~(A) by K’. Clearly K’ C K. Let Tr: L --&#x3E; K, resp. N: L ~ K,
denote the classical trace and norm maps. As G = AutK L, these maps
coincide with the ones we have defined. Since K C L is finite separ-
able, there exists an x E L with Tr(x) ~ 0. Write x = y/z with y, z E A,
and set a =x . N(z). Then a E A and Tr(a) = N(z) . Tr(x) # 0. Any
element in K is of the form b1 c with b, cE A G We have

which shows that blc e K’. Thus K’ = K. ·

THEOREM 4.7: Let R be a commutative ring, A an R-algebra, and G
a subgroup of AutR(A). Assume A is Dedekind domain with perfect
residue fields at the maximal ideals. Then AGis a Dedekind domain,
the extension AG C A is finite and flat of degree [G [, and ~G R (A) = AG.

PROOF: The only nonstandard assertion is the equality ~ (A) = AG.
The classical proof of the finiteness of A over AG (see e.g. [12])
actually shows that A is finite as a ~ (A)-module. Therefore E (A) is
noetherian by the Eakin-Nagata theorem ([4] and [10]). Consequently
AG is a finite ~ (A)-module, being a submodule of A. To prove
~ (A) = AG it suffices to prove that ~ (A)p = A pG for all maximal ideals
p of ~ (A). Since we may replace R by E (A) itslef in the definition of
~ (A), this and Prop. 4.4 show that we may assume that B = E (A) is
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local. Then C = A G is a local by Prop. 4.6, hence a discrete valuation
ring, and A is a semi-local Dedekind domain, in particular, a principal
ideal domain.

Let p and q denote the maximal ideals of B and C respectively,
and let rl, ..., rS denote the maximal ideals of A. Let w (resp.
v1, ..., Vs denote the valuations corresponding to q (resp. ri, ..., rs).
We first prove that p contains a uniformizing parameter for C, that is,
a generator of q. Pick a generator u of ri such that vi(u) = 0 for i ~ 2.
Set ir = N(u), then 03C0~ p. The ramification index for q at any r; is

independent of i and equals e = cardfg E G 1 g(ri) = ri). We have
v1(g(u)) = 1 if g(ri) = ri, and v1(g(u)) = 0 otherwise. Hence by stan-
dard valuation theory we get

So W( 03C0) = 1, that is, ir generates q.
Let k and k’ be the residue fields of B and C. The last obstacle to

proving B = C is that the extension k C k’ may a priori be nontrivial.
Only at this point does the assumption on the residue fields of A
come in. Because of it, k’ is a subfield of finite index of a perfect field.
Hence k’ is perfect. By the same argument k is perfect, so the
extension k C k’ is separable. Choose a finite galois extension k C k"
that contains k’, and choose a finite flat local extension B C B’, where
B’ is a local ring with residue field k". (Set B’ = B [X]/(f(X)), where
k" = k [X )/( f (X )); see [6, 0.10.3] for details.) We have a commutative
diagram

where C’ = C~B B’ and A’ = A OB B’ and where the vertical maps are
finite and étale. Since B’ = ~GB, (A), C’ is local by Prop. 4.6, thus a
discrete valuation ring. (A finite étale extension of a normal domain is
locally normal.) Since k’ (5)k k" is a finite product of copies of k", it

follows that the residue field of C’ equals k". Let p’ and q’ denote the
maximal ideals of B’ and C’. Then p’ . C’= q’. This implies that p’
contains a uniformizing parameter t for C’. (It may be chosen among
a set of generators of p’.)
The extension B’ C C’ is finite; so the conductor of B’ in C’ is a

nonzero ideal, say, td. C’ for some d E N U{O}. We identify the

residue fields of B’ and C’ and denote the residue class of an element

z in B’ or C’byz. For any c e C’we may find a b ~ B’ so that b = c.
Let x E C’ be arbitrary. It follows that we may find elements
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so that

where xd belongs to the conductor. The right hand side of this

equality belongs to B’, thus x E B’. Consequently B’ = C’, and since
the extension B C B’ is faithfully flat, we have B = C. ·

Let p : X - S be a morphism of finite type of locally noetherian
schemes, and let G be a finite group of S-automorphisms of X that
acts admissibly in the sense of Grothendieck ([5]). Then one may
cover X by G-invariant affine open subschemes Ui with rings Ai such
that the quotient X/G is an S-scheme obtained by glueing together the
Spec(A9). The quotient XI G is of finite type over S and the natural
morphism X ~ X/ G is finite and surjective. Moreover, it is obvious

that X/G is proper over S if and only if X is proper over S.

DEFINITION 4.8: With the same notation as above we say that X/G
is co-generated by the G-symmetric functions over S, if the covering
1 Ujl of X may be chosen so that for each i, p( Ui) is contained in an
open affine subscheme Vi of S with ring Ri such that AGi = ~GRi (Ai).

THEOREM 4.9: Let p : X - S be a flat morphism of schemes and let
G be a finite group of S-automorphisms of X that acts admissibly.
Assume that for every geometric point s of S the quotient XIG of the
fibers Xs is co-generated by the G-symmetric functions over s.

Then XIG is co-generated by the G-symmetric functions over S, and
the formation of the natural projection X --&#x3E; XIG commutes with base
change on S. In particular, for every geometric point s of S one has

Furthermore, then XIG is flat over S, and X --&#x3E; XIG is flat if and
only if XS ~ XIG is flat for every geometric point s of S. Moreover,
when the latter holds, then XIG is quasi-projective (resp. locally
projective) over S if and only if p is quasi-projective (resp. locally
projective).

PROOF: We may assume that S is affine with (noetherian) ring R,
and we first consider an open affine G-invariant subscheme U of X
with ring A. Then UIG = Spec(A G) and U - UI G corresponds to the
inclusion A G C A. Here A G is noetherian (of finite type over R) and A
is a finite AG-module. Consider the following complex of finite A’-


