Compositio Mathematica

Lorenzo Robbiano

A theorem on normal flatness

Compositio Mathematica, tome 38, no 3 (1979), p. 293-298
http://www.numdam.org/item?id=CM_1979__38_3_293_0
© Foundation Compositio Mathematica, 1979, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A THEOREM ON NORMAL FLATNESS

Lorenzo Robbiano*

Introduction

The beginning of the story is in [4] where the first theorem of transitivity of normal flatness is given.

More or less the problem is the following. Let R be a local ring, $I, J, \Lambda=I+J$ ideals of R and assume that J is generated by a regular sequence mod I; then how is it possible to relate the properties that $G(I)$ (the graded ring associated to I) is a free R / I-module and $G(\Lambda)$ is a free R / Λ-module?

As I said, the first answer was in [4] and it was the starting point for successive improvements (see for instance [1], [2], [5], [8]); a theory of normal flatness was constructed ([3]) and also some questions on normal torsionfreeness were solved (see for instance [1], [6], [7], [8]). In this kind of problems it always happened that the authors assumed J to be in particular position with respect to I (essentially, as I said, J is generated by a regular sequence $\bmod I$). The purpose of the present paper is to produce a new theorem (Theorem 10) of transitivity of normal flatness in the case that I, J are in "symmetric position"; in order to prove it, I firstly achieve some results which give a connection between the graded rings $G(I), G(J), G(\Lambda)$; in this way it is also possible to give a new insight in the proofs of some known theorems.

In this paper all rings are supposed to be commutative, Noetherian and with identity.

Let R be a ring, $I, J, \Lambda=I+J$ ideals of R; we denote by $R(I ; J)$ the "Rees algebra" associated with the pair $(I ; J)$ i.e. the graded ring $\oplus_{n} R_{n}(I ; J)$ where $R_{n}(I, J)=\oplus_{r+s=n} I^{r} J^{s}$ and the multiplication is the obvious one.

[^0]Of course $R(I ; R)=R(I)$ the usual Rees algebra.
We shall denote by $G(I ; J)$ the graded ring associated with the pair $(I ; J)$ i.e. the graded ring $R(I ; J) \otimes_{R} R / \Lambda$.

It is clear that $G(I ; J)=\oplus G_{n}(I ; J)$ where $G_{n}(I, J)=$ $\oplus_{r+s=n} G_{r, s}(I ; J)$ and $G_{r, s}(I ; J)=I^{r} J^{s} \otimes_{R} R / \Lambda \simeq I^{r} J^{s} / I^{r} J^{s} \Lambda$.

It is also clear that we have canonical epimorphisms

$$
G(I) \otimes_{R} G(J) \longrightarrow G(I ; J) \longrightarrow G(\Lambda)
$$

Lemma 1: Let r, n be integers such that $0 \leq r<n$ and call $s=n-r$; let R be a ring, $I, J, \Lambda=I+J$ ideals of R and assume that $I^{r+1} \cap J^{s-1}=$ $I^{r+1} J^{s-1}$. Then the canonical epimorphism

$$
I^{r+1} \Lambda^{s-2} / I^{r+1} \Lambda^{s-1} \oplus I^{r} J^{s-1} / I^{r} J^{s-1} \Lambda \longrightarrow I^{r} \Lambda^{s-1} / I^{r} \Lambda^{s}
$$

is an isomorphism.
Proof: An element of the direct sum is of the form ($\bar{\alpha}, \bar{\beta}$) where $\alpha \in I^{r+1} \Lambda^{s-2}, \beta \in I^{r} J^{s-1}$.

With the obvious meaning of the symbols its image is $\overline{\alpha+\beta}$.
Suppose now that $\alpha+\beta \in I^{r} \Lambda^{s}$; then

$$
\begin{aligned}
\alpha \in & I^{r+1} \Lambda^{s-2} \cap\left(I^{r} J^{s-1}+I^{r} \Lambda^{s}\right) \\
= & I^{r+1} \Lambda^{s-2} \cap\left(I^{r} J^{s-1}+I^{r} J^{s}+I^{r+1} J^{s-1}+I^{r+2} J^{s-2}+\cdots+I^{r+s}\right) \\
= & I^{r+1} \Lambda^{s-2} \cap\left(I^{r} J^{s-1}+I^{r+2} \Lambda^{s-2}\right)=I^{r+2} \Lambda^{s-2} \\
& +\left(I^{r+1} \Lambda^{s-2} \cap I^{r} J^{s-1}\right) \subseteq I^{r+2} \Lambda^{s-2}+I^{r+1} \cap J^{s-1} \\
= & I^{r+2} \Lambda^{s-2}+I^{r+1} J^{s-1}=I^{r+1} \Lambda^{s-1} \text { which means } \bar{\alpha}=0 .
\end{aligned}
$$

Now we have

$$
\begin{aligned}
\beta & \in I^{r} J^{s-1} \cap I^{r} \Lambda^{s} \\
& =I^{r} J^{s-1} \cap\left(I^{r+s}+\cdots+I^{r+2} J^{s-2}+I^{r+1} J^{s-1}+I^{r} J^{s}\right) \\
& =I^{r+1} J^{s-1}+I^{r} J^{s}+I^{r} J^{s-1} \cap I^{r+2} \Lambda^{s-2} \\
& \subseteq I^{r} J^{s-1} \Lambda+J^{s-1} \cap I^{r+1}=I^{r} J^{s-1} \Lambda \text { which means } \bar{\beta}=\mathbf{0} .
\end{aligned}
$$

Proposition 2. Let n be a positive integer; let R be a ring, $I, J, \Lambda=$ $I+J$ ideals of R. Assume that $I^{r} \cap J^{s}=I^{r} J^{s}$ for every pair of positive integers r, s such that $r+s=n$. Then the canonical epimorphism $G_{n-1}(I ; J) \longrightarrow G_{n-1}(\Lambda)$ is an isomorphism.

Proof. It is an easy consequence of Lemma 1.

Lemma 3. Let r,s be positive integers; with the usual notations assume that $I^{r} \cap J=I^{r} J$ and $G_{s}(J)$ is a free R / J-module. Then the canonical epimorphism $G_{r}(I) \otimes_{R} G_{s}(J) \xrightarrow{\pi} G_{r, s}(I ; J)$ is an isomorphism.

Proof. Let $\alpha=r k_{R / J}\left(G_{s}(J)\right)=r k_{R / \Lambda}\left(J^{s} / J^{s} \Lambda\right)$ and let us choose $\theta_{1}, \ldots, \theta_{\alpha} \in J^{s}$ so that $\bar{\theta}_{1}, \ldots, \bar{\theta}_{\alpha}$ is a free basis of $G_{s}(J)$. Then the homomorphism $\rho: G_{r}(I) \otimes G_{s}(J) \longrightarrow\left(I^{r} / I^{r} \Lambda\right)^{\alpha}$ defined by $\rho\left(\bar{a} \otimes \bar{\theta}_{i}\right)=$ $(0, \ldots, 0, \bar{a}, 0, \ldots, 0)$ where \bar{a} is in the i th place, is clearly an isomorphism.

Now we can consider the homomorphism $\tau:\left(I^{r} / I^{r} \Lambda\right)^{\alpha} \longrightarrow$ $I^{r} J^{s} / I^{r} J^{s} \Lambda$ defined by $\tau\left(\bar{a}_{1}, \ldots, \bar{a}_{\alpha}\right)=\overline{\sum a_{i} \theta_{i}}$.

It is clear that $\pi=\tau \circ \rho$, hence it is enough to prove that τ is injective. Let $\overline{0}=\tau\left(\bar{a}_{1}, \ldots, \bar{a}_{\alpha}\right)=\overline{\sum a_{i} \theta_{i}}$; this means that $\Sigma a_{i} \theta_{i} \in I^{r} J^{s} \Lambda$ hence $\Sigma a_{i} \theta_{i}=\sum b_{i} \theta_{i} \bmod J^{s+1}$ where $b_{i} \in I^{r} \Lambda$. Therefore $\Sigma\left(a_{i}-b_{i}\right) \theta_{i}=$ $0 \bmod J^{s+1}$ which implies $a_{i}-b_{i} \in J$ for every i. We get $a_{i} \in$ $I^{r} \cap\left(I^{r} \Lambda+J\right)=I^{r} \Lambda+I^{r} \cap J=I^{r} \Lambda+I^{r} J=I^{r} \Lambda$ for every i, and this concludes the proof.

Lemma 4. With the usual notations assume that $I \cap J=I J$ and $G_{r}(J)$ is a free R / J-module for $r=1, \ldots, n-1$. Then $I \cap J^{n}=I J^{n}$.

Proof. It is an easy consequence of the fact that, given I_{1}, I_{2} ideals of a ring $R, I_{1} \cap I_{2}=I_{1} \cdot I_{2}$ is equivalent to $\operatorname{Tor}_{1}^{R}\left(R / I_{1}, R / I_{2}\right)=0$.

Theorem 5. Let R be a ring, $I, J, \Lambda=I+J$ ideals of R such that $I \cap J=I J$. Let n be a positive integer and assume that $G_{i}(I)$ is a free R / I-module for $i=1, \ldots, n-1$ and $G_{j}(J)$ is a free R / J-module for $j=1, \ldots, n-1$.

Then the canonical epimorphism $\oplus_{\lambda+\mu=\nu} G_{\lambda}(I) \otimes_{R} G_{\mu}(J) \longrightarrow$ $G_{\nu}(\Lambda)$ is an isomorphism, hence $G_{\nu}(\Lambda)$ is a free R / Λ-module for $\nu=1, \ldots, n-1$.

Proof. Using Lemma 4 we get $I^{r} \cap J^{s}=I^{r} J^{s}$ for $r=1, \ldots, n-1$, $s=1, \ldots, n-1$; hence $\oplus_{\lambda+\mu=\nu} G_{\lambda, \mu}(I ; J) \simeq G_{\nu}(\Lambda)$ for $\nu=1, \ldots, n-1$ by Proposition 2.

Using Lemma 3 we are done.

Remark. It is possible to use theorem 5 to prove the following (known) fact. Let R be a local ring, let $a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{m}$ be R-sequences such that if we call $I=\left(a_{1}, \ldots, a_{n}\right), J=\left(b_{1}, \ldots, b_{m}\right)$, $I \cap J=I J$.

Then $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}$ is a regular R-sequence.

Proof. (Hint). Use Theorem 5 to prove that $G(I+J)$ is a polynomial ring in $n+m$ indeterminates.

Lemma 6. With the usual notations denote by ${ }^{-}$the reduction modulo I. Then the canonical sequence of R / Λ-modules

$$
0 \longrightarrow I \cap J^{n} / I J^{n}+I \cap J^{n+1} \longrightarrow J^{n} / J^{n+1} \xrightarrow{\pi_{n}} \bar{J}^{n} / \bar{J}^{n+1} \longrightarrow 0
$$

is exact for every positive integer n.
Proof. $\bar{J}^{n} / \bar{J}^{n+1} \simeq\left(J^{n}+I\right) /\left(J^{n+1}+I\right) \simeq J^{n} /\left(J^{n+1}+J^{n} \cap I\right)$.
Hence Ker $\pi_{n} \simeq\left(J^{n+1}+J^{n} \cap I\right) /\left(J^{n+1}+J^{n} I\right)$

$$
\simeq\left(I \cap J^{n}\right) /\left(I \cap J^{n} \cap\left(I J^{n}+J^{n+1}\right)\right) \simeq\left(I \cap J^{n}\right) /\left(I J^{n}+I \cap J^{n+1}\right) .
$$

Henceforth we assume that R is local.

Corollary 7. With the notations of Lemma 6, assume that R is local and let n be a positive integer. Then the following conditions are equivalent
(i) π_{r} is an isomorphism for every $r \geqslant n$.
(ii) $I \cap J^{r}=I J^{r}$ for every $r \geqslant n$.

Proof. The only thing to be proved is that (i) implies $I \cap J^{n}=I J^{n}$. Now, if π_{r} is an isomorphism for every $r \geqslant n$, then $I \cap J^{n}=I J^{n}+I \cap$ $J^{n+1}=I J^{n}+I J^{n+1}+I \cap J^{n+2}=I J^{n}+I \cap J^{n+2}=\cdots=I J^{n}+I \cap J^{n+k}$. Hence $I \cap J^{n}=\bigcap_{k}\left(I J^{n}+I \cap J^{n+k}\right)=I J^{n}$.

Corollary 8. With the usual notations assume that R is local $I \cap J=I J$ and $G(J)$ is a free R / J-module. Then $G(\bar{J}) \simeq G(J) \otimes_{R} R / \Lambda$, hence is a free R / Λ-module.

Proof. Using Lemma 4 we get that $I \cap J^{n}=I J^{n}$ for every n, hence we can apply Corollary 7.

Lemma 9. Let R be a local ring, I, J, Λ as above, $B=R / I, A=B / \bar{\Lambda} \simeq$ R / Λ (${ }^{-}$denotes "modulo I ").

Let L be a finite free B-module and T a submodule of L. Suppose
(i) $T_{p}=0$ for every $\wp \in \operatorname{Ass}(A)$.
(ii) $J^{n} / J^{n} \Lambda$ is a free A-module for every n.
(iii) $\left(I \cap J^{n}\right)_{p}=\left(I J^{n}\right)_{p}$ for every $p \in \operatorname{Ass}(A)$.

Then $T=0$.

Proof. If we make the identification of L with $(R / I)^{\alpha}$ for a suitable α, then T can be considered as the reduction modulo I of a sub-
module K of R^{α}. Because of the type of the argument, we may assume that $\alpha=1$, so it is enough to prove that $K \subset I$.

Using (i) we easily get that $T \subset \bar{\Lambda}$, hence $K \subset \Lambda$. Therefore if $x \in K$ there exists an element $a \in I$ such that $x-a \in J$. Let $\vartheta_{1}, \ldots, \vartheta_{r}$ be a minimal system of generators of J, such that $\bar{\vartheta}_{1}, \ldots, \bar{\vartheta}_{r}$ is a free basis of $J / J \Lambda$. Then $x-a=\Sigma \lambda_{i} \vartheta_{i}$ and using (i) we get an element $\lambda \notin \cup \wp$, $\wp \in \operatorname{Ass}(A)$ such that $\lambda(x-a)=\Sigma \lambda \lambda_{i} \vartheta_{i} \in I$. Hence $\lambda(x-a)=\Sigma \lambda \lambda_{i} \vartheta_{i} \in$ $I \cap J$.

From (iii) we get an element $\lambda^{\prime} \notin \bigcup_{\wp}, \wp \in \operatorname{Ass}(A)$ such that

$$
\lambda \lambda^{\prime}(x-a)=\Sigma\left(\lambda \lambda^{\prime} \lambda_{i}\right) \vartheta_{i} \in I J \subset J \Lambda .
$$

From (ii) we deduce $\lambda \lambda^{\prime} \lambda_{i} \in \Lambda$ for every i, hence $\lambda_{i} \in \Lambda$ for every i, hence $x \in I+\Lambda J=I+J^{2}$. Going on with the same type of argument we get $x \in I+J^{r}$ for every r, hence $x \in I$.

Let us state a notation: if \mathfrak{a} is an ideal of a ring R, we denote by $\mathscr{Z}_{\mathrm{a}}(R)$ the set $\{x \in R / \bar{x} \in \mathscr{Z}(R / a)\}$ where - denotes the reduction modulo a and $\mathscr{Z}(\cdots)$ means "zerodivisors of . .."

We are ready to prove the following

Theorem 10. Let R be a local ring, $I, J, \Lambda=I+J$ ideals of R such that $I \cap J=I J$. Then the following conditions are equivalent:
(1) $G(I)$ and $G(J)$ are free.
(2) $G(I) \otimes_{R} R / \Lambda$ and $G(J) \otimes_{R} R / \Lambda$ are free and $G\left(I R_{\mathfrak{p}}\right)$ and $G\left(J R_{\mathfrak{p}}\right)$ are free for every $\wp \in \operatorname{Ass}(R / \Lambda)$.
(3) $G(\Lambda)$ is free, $G\left(I R_{\mathfrak{p}}\right)$ and $G\left(J R_{\mathfrak{p}}\right)$ are free for every $p \in$ $\operatorname{Ass}(R / \Lambda)$ and $\mathscr{Z}_{I}(R), \mathscr{L}_{J}(R)$ are contained in $\mathscr{Z}_{\Lambda}(R)$.

Proof. (1) $\Rightarrow(3) \quad G(\Lambda)$ free follows from Theorem 5.
Hence we have to prove that $\mathscr{Z}_{I}(R) \subseteq \mathscr{Z}_{\Lambda}(R)$ (the same argument works for $\mathscr{Z}_{J}(R)$).

If we call $B=R / I, \mathscr{Z}_{I}(R) \subseteq \mathscr{Z}_{\Lambda}(R)$ is equivalent to $\mathscr{Z}_{(0)}(B) \subseteq \mathscr{Z}_{\Lambda}(B)$ where ${ }^{-}$denotes the reduction modulo I. Using Corollary 8 we get that $G(\Lambda)$ is a free $R / \Lambda \simeq B / \bar{\Lambda}$-module. Let now x, y be elements of B such that $x y=0$ and $x \in \wp \in E \wp$ where $E=\operatorname{Ass}(B \mid \bar{\Lambda})$. Being $G(\Lambda)$ free, $\operatorname{Ass}\left(B / \bar{\Lambda}^{n}\right) \subseteq \operatorname{Ass}(B / \bar{\Lambda})$, hence $y \in \bigcap_{n} \bar{\Lambda}^{n}=(0)$.
$(2) \Rightarrow(1)$ Let $\vartheta_{1}, \ldots, \vartheta_{\alpha}$ be a minimal system of generators of I^{n}, such that $\bar{\vartheta}_{1}, \ldots, \bar{\vartheta}_{\alpha}$ is a free basis of $I^{n} / I^{n} \Lambda$.

Let $0 \longrightarrow T \longrightarrow(R / I)^{\alpha} \xrightarrow{\pi} I^{n} / I^{n+1} \longrightarrow 0$ be the exact sequence of R / I-modules defined by $\pi\left(e_{i}\right)=\bar{\vartheta}_{i} \in I^{n} / I^{n+1}$.

Then we can apply Lemma 9, because (i) and (ii) are clearly satisfied and (iii) follows from Lemma 4.

In conclusion $T=0$ and $G_{n}(I)$ is free. This works for every n and, in the same way, for J.

Since $(1) \Rightarrow(2)$ is obvious, we only have to prove $(3) \Rightarrow(1)$. Since $I \cap J=I J$, by Proposition 2 we get

$$
\Lambda / \Lambda^{2} \simeq I / I \Lambda \oplus J / J \Lambda
$$

Let $\vartheta_{1}, \ldots, \vartheta_{\alpha}$ be a minimal system of generators of I such that $\bar{\vartheta}_{1}, \ldots, \bar{\vartheta}_{\alpha}$ is a free basis of $I / I \Lambda$.

Let $0 \longrightarrow T \longrightarrow(R / I)^{\alpha} \longrightarrow I / I^{2} \longrightarrow 0$ be the exact sequence of R / I-modules defined by $\pi\left(e_{i}\right)=\bar{\vartheta}_{i} \in I / I^{2}$.

By hypothesis $T_{\mathfrak{p}}=0$ for every $\wp \in \operatorname{Ass}(R / \Lambda)$, hence, for every $x \in T$ there exists $\lambda \notin \mathscr{Z}_{A}(R)$ such that $\lambda x=0$. Since $\mathscr{Z}_{I}(R) \subseteq \mathscr{Z}_{\Lambda}(R)$, we get $x=0$. Hence I / I^{2} and J / J^{2} (using the same argument) are free. Let us assume, by induction, that $G_{i}(I), G_{i}(J)$ are free for $i=$ $0, \ldots, \nu-1$. Using Lemma 4 we get $I^{\lambda} \cap J^{\mu}=I^{\mu}$ for $\lambda+\mu \leqslant \nu+1$ hence $G_{\nu}(\Lambda) \simeq \oplus_{\lambda+\mu=\nu} G_{\lambda, \mu}(I ; J)$ by Proposition 2 .

In particular $I^{\nu} / I^{\nu} \Lambda$ and $J^{\nu} / J^{\nu} \Lambda$ are free R / Λ-modules.
Using the same argument as before we get that $G_{\nu}(I)$ and $G_{\nu}(J)$ are free.

REFERENCES

[1] Achilles, Schenzel, Vogel: Bemerkungen über normale Flachheit und normale Torsionsfreiheit und Anwendungen. (Preprint).
[2] Herrmann, Schmidt: Zur Transitivität der normalen Flachheit. Invent. Math. 28 (1975)
[3] Herrmann, Schmidt, Vogel: Theorie der normalen Flachheit. Teuber-Texte zur Math. (1977).
[4] Hironaka: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. of Math. 79 (1964).
[5] Grothendieck: Éléments de géométrie algébrique I.H.E.S. Publ. Math. Paris 32 (1967).
[6] Robbiano: An algebraic property of $\mathbf{P}^{1} \times \mathbf{P}^{r}$. (In preparation).
[7] Robbiano, Valla: Primary powers of a prime ideal. Pacific J. Math. 63 (1976).
[8] Robbiano, Valla: On normal flatness and normal torsionfreeness. J. of Algebra 43 (1976).

[^0]: *This work was supported by C.N.R. (Consiglio Nazionale delle Ricerche).

