@article{CM_1979__38_3_329_0, author = {Stroeker, R. J.}, title = {A class of diophantine equations connected with certain elliptic curves over $Q(\sqrt{-13})$}, journal = {Compositio Mathematica}, pages = {329--346}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {38}, number = {3}, year = {1979}, zbl = {0402.14010}, language = {en}, url = {http://archive.numdam.org/item/CM_1979__38_3_329_0/} }
TY - JOUR AU - Stroeker, R. J. TI - A class of diophantine equations connected with certain elliptic curves over $Q(\sqrt{-13})$ JO - Compositio Mathematica PY - 1979 SP - 329 EP - 346 VL - 38 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - http://archive.numdam.org/item/CM_1979__38_3_329_0/ LA - en ID - CM_1979__38_3_329_0 ER -
%0 Journal Article %A Stroeker, R. J. %T A class of diophantine equations connected with certain elliptic curves over $Q(\sqrt{-13})$ %J Compositio Mathematica %D 1979 %P 329-346 %V 38 %N 3 %I Sijthoff et Noordhoff International Publishers %U http://archive.numdam.org/item/CM_1979__38_3_329_0/ %G en %F CM_1979__38_3_329_0
Stroeker, R. J. A class of diophantine equations connected with certain elliptic curves over $Q(\sqrt{-13})$. Compositio Mathematica, Tome 38 (1979) no. 3, pp. 329-346. http://archive.numdam.org/item/CM_1979__38_3_329_0/
[1] Number Theory. Pure and Appl. Maths. Ser. 20. Acad. Press, New York and London, 1966. | MR | Zbl
and :[2] Ueber die Darstellung der Zahlen durch die binäre kubische Formen mit negativer Diskriminante. Math. Zeitschr. 31 (1930) 1-26. | JFM | MR
:[3] Courbes elliptiques: Formulaire (d'après J. Tate). In: Modular functions of one variable IV. Lecture Notes in Maths. 476. Springer, Berlin-Heidelberg -New York, 1975, 53-73. | MR
:[4] Diophantine Equations. Pure and Appl. Maths. Ser. 30. Acad. Press, New York and London, 1969. | MR | Zbl
:[5] Darstellungen ganzer Zahlen durch binäre kubische Formen mit negativer Diskriminante. Math. Zeitschr. 28 (1928) 10-29. | JFM | MR
:[6] Ueber einige Anwendungen Diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1929 nr. 1. | JFM
:[7] Elliptic curves defined over imaginary quadratic number fields. Doct. thesis, Univ. Amsterdam, 1975. | MR | Zbl
:[8] Letter to J.-P. Serre, dated July 24th 1971.
: