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A QUASI-SPLIT GROUP OVER R
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@ 1979 Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn
Printed in the Netherlands

1. Introduction

The principle of functoriality in the L-group suggests the existence of
character identities among certain groups which share common Cartan

subgroups. Concrete examples of such identities are to be found in [3],
[11], and [12]. Here we consider the simplest case for real (reductive,
linear, algebraic) groups, that of two groups with same L-group
(associate group in [17]) or, equivalently, two groups which are inner
forms of the same quasi-split group. Further, we restrict our attention to
the characters of tempered (irreducible, admissible) representations. A
precise statement of our result appears at the end of Section 3 and again
in Theorem 6.3.

We use the following approach. Let G and G’ be inner forms of the
same quasi-split group (cf. Section 2). We may as well assume that G’
itself is quasi-split. Then a result in [18] establishes a correspondence
between the regular points in G and those in G’. We study this

correspondence in Section 2. Next we recall some properties of the set
tP(G) of parameters for the L-equivalence classes of irreducible,
admissible representations of G (cf. [18]) and attach to each tempered ç
in e(G) a tempered distribution X,. This distribution, which is just a sum
of discrete series or unitary principal series characters, can be regarded
as a function on the regular elements of G. Since clJ(G) is embedded in
4Y(G’) we may formulate some character identities between G and G’.
Our proof begins in Section 4. We introduce certain averaged ("stable")
orbital integrals. Their characterization (Theorem 4.7), which is a

consequence of theorems of Harish-Chandra, enables us to transfer
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stable orbital integrals from G to G’. We therefore obtain a cor-

respondence between Schwartz functions on G and Schwartz functions
on G’. In the remaining sections we define the notion of a stable
tempered distribution and see that there is a map from the space of
stable tempered distributions on G’ to that for G, dual to the cor-
respondence of Schwartz functions. If cp’ is a tempered parameter for G’
then X,, is stable (Lemma 5.2). By investigating the image of xç, under our
map we obtain the proposed character identities. Again the results
follow from theorems of Harish-Chandra.

In [23] we obtained Theorem 6.3 without recourse to orbital in-

tegrals. However [20] suggests that our character identities be exhi-
bited as "dual" to a transfer of orbital integrals; this necessitates the
present approach. We will also have other uses for our charac-

terization of stable orbital integrals. Note that if G is GLn(R) or a
group with just one conjugacy class of Cartan subgroups then the
notion of "stable" can be omitted in Theorem 4.7. Thus for such

groups we have a characterization of the orbital integrals (with
respect to regular semisimple elements) of Schwartz functions.

2. Inner forms and C artan subgroups

We recall some standard facts. Suppose that G is a connected

reductive linear algebraic group defined over R. Then G = G(R) is a
reductive Lie group satisfying the conditions of [6]. A Cartan sub-

group T of G, in the sense of Lie groups, is the group of R-rational

points on some maximal torus T in G, defined over R. By a root of T
(or T ) we mean a root for the Lie algebra t of T in g, the Lie algebra
of G ; we follow the usual definitions of real, imaginary (compact or
noncompact) and complex roots (cf. [26]). An isomorphism tp: G ---&#x3E; G’

of reductive groups for which tJ: T - Ç(T) is defined over R maps
real (respectively, imaginary, complex) roots of T to real (respectively,
imaginary, complex) roots of tJ(T). We denote by il(G, T ) the Weyl
group for (A, f); we say that w E G realizes ú) E il(G, T) if Ad w/f
coincides with to and denote by Q(G, T) the set of those elements of
il(G, T) which can be realized in G.
A parabolic subgroup P of G is the group of R-rational points on a

parabolic subgroup P of G defined over R; a Levi decomposition
P = MN for P with M defined over Ri yields a Levi decomposition
P = MN for P. We call G quasi-split if G is quasi-split over R, that
is, if G contains a Borel subgroup defined over R; this is equivalent to
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requiring that the Levi components of a minimal parabolic subgroup
of G be abelian (and hence Cartan subgroups). Suppose that G’ is

quasi-split over R. Then G is an inner form of G’ (or, G an inner form
of G’) if there exists an isomorphism «/1: G -&#x3E; G’ for which ;;«/1-1 is

inner (the bar denotes the action of complex conjugation). If G" is
also quasi-split over R and q: G ---&#x3E; G" is such that -,q-’ is inner then
11 = 0Çi where L is inner and 0 is defined over R. Every group G
(connected, reductive and defined over R) is an inner form of some

quasi-split group (cf. [21]).
We will assume, from now on, that G’ is quasi-split and G an inner

form of G’. We fix an isomorphism Ç: G ---&#x3E; G’ for which tptp-’ is inner.
A lemma in [18] shows that we may use tp to embed each Cartan

subgroup of G in G’. More precisely, the lemma asserts that if T is a
maximal torus in G defined over R then there exists x E G’ (depend-
ing on T) such that the restriction of ad x - tp to T, which we denote
by tpx, is defined over R; «Px(T) is a Cartan subgroup of G’. We now
study these embeddings tpx.
Let t(G) be the set of (G-)conjugacy classes of Cartan subgroups

of G ; we denote by (T) the class of the Cartan subgroup T. We will
see that T ---&#x3E; qjx(T) induces an embedding ipt: t(G) --&#x3E; t(G), in-

dependent of the choices for x. To further describe «/1 t, we recall a
natural partial ordering on t(G): if S(T) denotes the maximal R-split
torus in a maximal torus T then (TI):5 (T2) if and only if S(Tl) C

S(T’) for some T E (Tl), T2 E (T2). Clearly is order-preserving; we
will show that tpt maps t(G) to an "initial segment" of t(G’) (cf.
Lemma 2.8).
We begin with a definition from [ 191: if T is a Cartan subgroup of G

then

This is easily seen to be the same as Ig E G : gTg-’ c Gl. As above,
S(T) will denote the maximal R-split torus in T.

THEOREM 2.1: Let M be the centralizer in G of S(T). Then

where Norm(M, T) denotes the normalizer of T in M.

PROOF: Suppose that x E A(T). Then Xtx-’ = xtx-’, t E T (bar
denoting complex conjugation). Therefore x-’x centralizes T and so
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belongs to T. Let P be a parabolic subgroup of G, defined over R
and containing S(T) as a maximal R-split torus in its radical (cf. [2]).
Then xPx-I = x(x-I.fp.f-IX)X-l = xPx-1 since T is contained in P,
and so xPx-1 is defined over R. From [2] it follows that P and xPx-I
are conjugate under G. Let y E Gx be such that y normalizes P. Then
y E P. But M is a Levi subgroup of P defined over R and yMy-1 =
yMy-1 since T C M. Therefore yMy-’ is conjugate to M under the
group N of R-rational points on the unipotent radical of P (cf. [2]). We
may then choose z E Ny C Gx fl P such that z normalizes M; z must
lie in M and ad z/ T is defined over R. In particular, zTz-I is defined
over R. Let Mi be the derived group of M and Z be the connected

component of the identity in the center of M. Then M = ZMI;
T = Z(T fl Mi) and zTz-’= Zz(T n M,)z-’; T m Mi and z(T n mi)z-1
are maximal tori in Mi, anisotropic over R. Hence T and zTz-’ are
conjugate under Mi and so z E MI Norm(M, T). We conclude then
that d(T) C G Norm(M, T).

Let TI = T n MI. Then to complete the proof it is sufficient to show
that if x E Norm(Mt, TI) then the restriction of ad x to Tl is defined
over R. This is a consequence of the following proposition.

PROPOSITION 2.2: Suppose that T is a torus defined and anisotropic
over R. Then every (rational) automorphism of T is defined over IR.

PROOF: Suppose that cp is a rational automorphism of T. There is a
unique automorphism cp v of the group L of rational characters on T
which satisfies (cp v À, t) = (À, cp -It), À E L, t E T. On the other hand,
Ã = -À, À E L. This implies that ço’ = cp v and so q3 = cp, as desired.

COROLLARY 2.3: If g E A(T) then gTg-’ is G-conjugate to T.

COROLLARY 2.4: If T contains a maximal R-split torus in G then the
action of an element in s4(T) on T can be realized in G.

In particular, q; (T) is finite since Norm(M, T)I T is isomorphic to the
Weyl group of (m, f).

Returning to the map «Px: T4 G’, let T’ = «Px(T). Note that if y E G’
then «pylT is defined over R if and only if yx-’EA(T’). Corollary 2.3,
applied twice, then shows that tft : (T)  (T) is a well-defined embed-
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ding of t(G) into t(G’), independent of the choices for x. Note that if
we replace Ç by q: G - G" then writing q = 0Çi as before, we obtain
’TIt = 0’tP’; the possibilities for 0’ are easily classified.
To describe the order properties of f/t we will characterize the

ordering on t(G) as in [10]. First, and partly for later use, we recall
the definition of compact and noncompact roots. Let a be an im-

aginary root for T (that is, a root in M) and Ha be the coroot attached
to a. If Xa is a root vector for a we fix a root vector X-a f or - a by
requiring that (Xa, X-a) = 2/(a, a) where ( , ) is the Killing f orm.

Then [Xa, X-,,] = Ha and CXa + CX-a + CHa is a simple complex Lie
algebra invariant under complex conjugation; in fact, Ha = - Ha and
Xa = CX-a for some c E C. Either there is an Xa for which Xa = - X-a
or there is one for which Xa = X-a. In the former case,

lifts to a homomorphism SU(2) ---&#x3E; G defined over R and a is compact.
In the latter

lifts to a homomorphism SL2 ---&#x3E; G over R and a is noncompact.
We will find it convenient to generalize the usual notion of Cayley

transform. Suppose that T is a Cartan subgroup of G and a a

noncompact imaginary root of T. Then we call s E G a Cayley
transform with respect to a if S-I s realizes the Weyl reflection with

respect to a. The proof of the following proposition is immediate.

PROPOSITION 2.7: (1) Ts = s Ts -’ is defined over R and the root sa is
real ; (2) the restriction of ad s to S(T) is defined over R ; (3) if s’ is

also a Cayley transform with respect to a then s’s E A(T,).

If s is the image of

under a homomorphism SL2- G of the type described above, then we
will call s a standard Cayley transform. From this example, Proposition
2.7, and Corollary 2.3 we conclude that for any s, S(T) is G-conjugate to
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a subtorus of S(Ts) of codimension 1. A straightforward argument then
shows that (T):5 (U) if and only if there is a sequence SI,..., sn of
Cayley transforms such that U = (... «TsI)s2 ...)sn.

LEMMA 2.8: ( 1) if (T):5 (U) then f/lt«T» :5 f/lt« U»; (2) if (U’) is in
the image of f/lt and (T’):5 (U’) then (T’) is in the image of f/lt; (3) the
image under f/lt of the class of fundamental Cartan subgroups in G is
the class of fundamental Cartan subgroups in G’.

PROOF: The assertion of the first part is immediate. For the second

part it is sufficient to show that if T’ is a Cartan subgroup of G’ and
s’ a Cayley transform with respect to some noncompact root a’ of
T’, then (T’) belongs to the image of f/lt if (Ti) does. Suppose then
that there exists x E G and T * such that f/lx: T* - T2 is defined over
R. Let 8 = f/I;I(s’a’). Then B is a real root of T*. There is a Cartan

subgroup T of G, a noncompact root a of T and a Cayley transform s
with respect to a such that s : T ---&#x3E; T* and sa B (cf. [25]). A cal-
culation shows that (ad s ’)-10 f/lx 0 ad s: T - T’ is defined over R. This
proves the second part.
The final assertion follows immediately from the fact that a Cartan

subgroup is fundamental if and only if it has no real roots [26].

COROLLARY 2.9: G contains a compact Cartan subgroup if and
only if G’ contains a compact Cartan subgroup.

Finally, it will be convenient to describe the embeddings Çx in the
following way. Let Greg be the set of regular elements in G ; we denote
by Ty the Cartan subgroup containing an element y in Greg. We will
say that y’ E G’ originates from y in Greg if there exists x E G’ such
that ox(y) = y’ and Çx: T, ---&#x3E; Ty- is defined over R. Then y’ also

originates from any element yw = wyw-1, w E sl (T,); these are the
only elements in G from which y’ originates. Similarly, if y’ originates
from y then so also does (y’)"’’ for any w’ E A(T,,), but these are the
only such elements.

3. Characters

The purpose of this section is to recall some formulations and

results from [18], and to define some characters. Let II(G) be the set
of infinitesimal equivalence classes of irreducible admissible

representations of G. According to [18] there is a space O(G) which
partitions II(G) into finite subsets II({), cp E O(G). Either all the classes
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in IIcp are tempered or none is [18, page 40]; if the former then we call
cp tempered. The map qf: G ---&#x3E; G’ induces an embedding CP(G)4 0 (G’)
which we denote by p-; cp’ is tempered if and only if cp is

tempered.
We assume from now on that cp is tempered. To describe the

classes in a typical Hç ("an L-equivalence class") we recall the

following from [18]. To cp we may attach a parabolic subgroup Po, a
Levi component Mo of Po and a Cartan subgroup To fundamental in
Mo. If Po = G is the only possibility we call cp discrete; then H,
consists of the (classes of) square-integrable representations attached
to an orbit, say X(cp), of characters on To under f2(GO, To) (we recall
this assignment below). In general, cp determines a discrete parameter
CPo for Mo. Set ir’ = o-, (!) ’ ’ EB an, where loil is a set of represen-
tatives for the classes in H,. Then IIcp consists of the classes of the
irreducible constituents of 7rç = Ind(ir’ Ip © 1 No; Po, Go), No denoting the
unipotent radical of Po.
To describe representatives for Hç, we may assume that Ji/To is

defined over R, without changing the map cp ---&#x3E; o’. Then PÓ = tp(PO),
Mo= tf(Mo) and To= tf(To) are defined over R. Moreover, Ji: Mo---&#x3E;
M’ 0 is such that tf-I is inner, and M’ 0 is quasi-split. We may thus take
PÓ, Mi and TÓ for the groups attached to p’ (cf. [18]). If cp is discrete
then cp’ is also discrete and II, is the set of classes attached to the
orbit A’, = JA - tp-’: A e X(o)l. In general, we may take (CPo)’, the

image of ço under the map O(Mo) ---&#x3E; CP(MÓ) induced by Ç/Mo, for (cp’)o,
the parameter for M’ 0 induced by p’; again, this follows immediately
from the construction in [18].
We recall parameters for (7i,..., an above; we write P, M, and T in

place of Po, Mo, and To. Let M’ be the connected component of the

identity in the derived group of M. If ZM is the center of M then

ZMMt has finite index in M and T = ZMT t, where T t = T rl Mt. Fix
A E X(ço) and let À be the differential of the restriction of A to T t.
Choose an ordering on the roots of (tri, t) with respect to which À is

dominant; L will denote one half the sum of the positive roots with
respect to this ordering. Let 7r(À, t) be a square-integrable irreducible
admissible representation of Mt attached to the regular functional À + t
in the manner of [5] and define

Then ai, ..., an may be chosen as
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A convenient way of identifying the tempered L-equivalence
classes is as follows. If T is a Cartan subgroup of G and A a character on
T set

Then there is a one-to-one correspondence between tempered
parameters ç and such orbits (A). To recover H, from (A) we fix
Ao E (A); if Ao is defined on To let Mo be the centralizer in G of the
maximal R-split torus in To and Po = MoNo a parabolic subgroup
containing Mo as Levi component. We then proceed as before,
defining 7r§ = EBlIJ 7r(wAo, tot) and 1T((J = Ind(ir,(D 1No). The map ’P  ’P’
on parameters induces the following map of orbits. If A is defined on
T pick x E G’ such that t/1x : T - G’ is defined over R. Then (A) &#x3E; (A’
where A’ = A 0 t/1 ;1.

Next, we attach a character y, to the collection Hç. For the
purposes of this paper it is appropriate to define y, as the character of
ir, (cf. the proofs of Lemma 5.2 and Theorem 6.3); X((J is thus a tempered
invariant eigendistribution. Before proceeding we observe that X((J has an
intrinsic definition. Indeed, each ç E H, has a well-defined character
which we denote by x(7r) and:

PROOF: The lemma asserts that each 7r in ncp occurs in 7r cp with

multiplicity one. But 7;, = (Di Ind(o-jo IN), the Ind(o-jo IN) being
unitary principal series representations. According to the theorem of
[13] the irreducible constituents of Ind(uQ9 lN) occur with multi-
plicity one (in the theorem quoted, G is a connected, semisimple
matrix group; the statement remains valid under our assumptions (cf.
[24]). By [18, page 65] two representations Ind(o-j (D IN) and

Ind(uj Q9 IN) are either infinitesimally equivalent or disjoint; they are
equivalent exactly when there is g E G normalizing M so that o-ilm is
equivalent to ujoad glM. Hence we have only to show the following
lemma.

LEMMA 3.2: If a and a’ are L-equivalent square-integrable irreduci-
ble admissible representations of M then Ind(a@ lN) is infinitesimally
equivalent to Ind(a ’ @ IN) if and only if a is infinitesimally equivalent to
03C3’.

This result is a special case of a theorem announced in [14] (cf. [15]), at



19

least when G is semisimple and simply-connected. We give a simple
independent proof for our case and arbitrary G.

PROOF: Assume that Ind«(T@ lN) and Ind(u’ 0 IN) are infinitesi-

mally equivalent. Choose g E G normalizing M and such that o- -ad g
is infinitesimally equivalent to o-’. We may assume that g normalizes
T. We may take or = ir(A, L) and (T’ = 7r(wA, wt), for some w E

f2(M, T). But then o-oadg is (infinitesimally equivalent to) 1T(gA, gt).
Hence there is Wo E f2 (M, T ) such that gll = wowA and gt = woWt. This
implies that

where, as before, À is the differential of AITt. Suppose that to, wo are
represented by w E M and wo e- M, respectively. If we show now that
(1) implies that the action of g-lwow on T can be realized in G then
it will follow that a) E il(M, T), which is sufficient to prove the

lemma.

Define Ho E ft, the Lie algebra of T t, by (À + t)(Ho) = 1(H, Ho),
H E t’. Then, by (1), g-lw°w fixes H°; also Ho is regular with respect
to il(M, T). Let To be the smallest algebraic subgroup of G whose
Lie algebra contains Ho. Then To is a torus in T, defined over R;

clearly g-’ w°w centralizes To. Let C denote the centralizer of To in G ;
C is connected, reductive, defined over R and of same rank as G.
Note that g-’ wow E d(T) n C. Hence, by Corollary 2.4, it is enough to
show that S(T), the maximal R-split torus in T, is a maximal R-split
torus in C.

Suppose then that S’ is a maximal R-split torus in C containing
S = S(T). Extend S’ to a maximal torus T’ in C defined over R. Since

Ho is regular with respect to n(M, T ) we have T =

(Cent(M, exp Ho»o i) Cent(M, To) D T, Cent(-, -) denoting "the cen-
tralizer in - of -", so that T = Cent(M, To). But TD To so

Cent(M, T’) C Cent(M, To) = T. On the other hand, S’:D S so that

S’ C Cent(G, S) = M and thus S’ C Cent(M, T’) C T. Hence S’= S and
the lemma is proved.
Now identify XCP and X,, as functions on Greg and G reg, respectively (cf.

[6]). Then our aim is to prove the following character identity:

Here y’ E G;eg originates from -y E Greg and 2qG is the dimension of

the symmetric space attached to the simply-connected covering of the
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derived group of G. Note that qG, - qG is an integer (cf. [26, volume 2,
page 225]).

4. Stable orbital integrals

Let y be a regular element in G and Ty be the Cartan subgroup
containing y. If dg and d’Yt are given Haar measures on G and Ty
respectively we denote by dyg the corresponding quotient measure on
G/ Ty. For any Schwartz function f on G the orbital integral

is absolutely convergent [6]. We will assume that if y and y’ lie in the
same Cartan subgroup then dyt = dy-t and write instead dt.
We now write T for Ty. An element w of A(T) defines a Haar

measure (dt)"’ on Tw. It is easily seen that Oj(y"’, (dt)W, dg) depends
only on the class of w in D(T) = GBd(T)IT (cf. Section 2). Therefore

Clearly,

for each w E d(T).
Recall that G is an inner form of the quasi-split group G’; we

continue with the same fixed isomorphism .p: GG Our aim is to
show that .p transports stable orbital integrals on G to stable orbital
integrals on G’. To make this precise we must normalize Haar
measures. The measures dg’ on G’ and dt’ on a Cartan subgroup T’ of
G’ will be arbitrary. Suppose that dg’ is defined by the differential
form oi’ on G’. The map qi induces a map from forms on G’ to forms
on G ; the image w of cv’ is a left-invariant form of highest degree, and
invariant under complex conjugation (cf. [12, page 476]). We take dg to
be the Haar measure on G defined by w. Now if T is a Cartan

subgroup of G choose x E G such that ex: T ---&#x3E; T’ is defined over

R (cf. Section 2). Then the pair dt’, «/Ix defines a measure dt on T,
independently of the choice of x and consistently with the choice of
dg.
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Recalling the observations of Section 2, we see that our definition

of 4J} ensures that the map

on G ;eg is well-defined. The transfer of stable orbital integrals from G
to G’ is then accomplished by the following theorem.

THEOREM 4.1: Let f be a Schwartz function on G. Then there is a
Schwartz function f’ on G’ such that, f or y’ E Greg,

if y’ originates from y in G

if y’ does not originate in G.

The constant (-l)qG-qG’ is inserted to obtain the identity of Corol-
lary 6.7.

In order to prove the theorem we will describe necessary and

sufficient conditions for a family of functions to be a family of stable
orbital integrals. Suppose then that for each Cartan subgroup T of G
we are given a function l’ c:p T (1’, dt, dg) defined on Treg = T n Greg
and depending on the choice of Haar measures dt and dg. We first
establish some properties for the case

with f some fixed Schwartz function on G. It is immediate that

for a, (3 &#x3E; 0 and, as we have already remarked, that

for to ed(T). We come then to the smoothness and growth properties
of these functions. Fix T, dt and dg. If À E t* is zero on f H E
t: exp H = 1) we denote by ex the corresponding quasi-character on T.
Fix a system I’ of positive roots for T in M (M as in Section 2) - that
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is, a system of positive imaginary roots for T. Set

for y E T, and

for y E Treg. For each element w of 2(T) choose a representative in
Norm(M, T) (cf. Theorem 2.1). Also, set L = (aEI+ a)/2. Then, in the
notation of [6],

where c is some constant depending only on the choice of measures.
From [6] it follows that 1frJ extends to a Schwartz function (in the
sense of [6]) on the dense open subset

of T. In particular, if De 3", the algebra of invariant diff erential

operators on T, then D1/IJ is bounded on T ég. The behavior of D1/IJ
across the boundary of T ég may then be described following Harish-
Chandra’s method for ’Ff.
Thus we will assume that yo is a semiregular element in

T - T ég. Then there are exactly two imaginary roots (3, say ± a, for
which ç(3( l’o) = 1. Let Ha be the coroot attached to a and set yv =

yo exp ipH,,, v e R. Then y, E T and limv!oD1/IJ(yv) and

limv!o D1/IJ( Yv) are well-defined; if for each choice of a, y and D

these limits are equal then 1/1 J extends to a Schwartz function on T.
In general, consider their différence. For each w E g)J(T) we choose a
representative in Norm(M, T). Then yô is semiregular, -wa being the
only roots trivial on yo’. According to [6], if (da is compact (cf.
Section 2) then

for all D EE 3-. Recalling our formula (1) for WT in terms of ’Ff we
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set

Then

the summation being over those elements w of 1-5,(T) for which wa is
noncompact. In particular,

if each lJJa is compact. Since

it will be sufficient to consider just the case where a is noncompact,
to complete our study.

LEMMA 4.2: Suppose that a is noncompact. Then if wa is also

noncompact, w E f2(M, T), there exists wo E Q(M, T) such that wa =

::t úJoa.

PROOF: Let Gyo be the connected component of the identity in the
centralizer of yo in G and G’ ’Y be the derived group of Cyo (yo is any
semiregular element in T on which e,, is trivial. If w is realized by
w E M then we claim that ad w : G-,, --&#x3E; Gyô is defined over R. Indeed,
since Gyo = TG’ ’y it is enough to verify that ad w : G ’ ’YO ---&#x3E; G is

defined over R. If we use the notation of Section 2 then the Lie

algebra of G;o is generated by Xa, X-a and Ha ; we require that
Xa X-a- Setting Xwa = Ad w(Xa), we obtain X-CrJa = Ad w(X-a) and
that Xwa = X-wa. Since Ad w(Ha) = Hwa it is now immediate that Ad w
commutes with complex conjugation on the Lie algebras. This proves
our claim.

There is a maximal torus U in Gyo defined over R and such that
U n G;o is R-split. Let V = U w; ad w : U ---&#x3E; V is defined over R. Since

U and V are maximal in M there exists Wt E M such that UWI = V
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and wl’w centralizes the maximal R-split torus in U (Theorem 2.1). If
,8 is a root for U in Gyo then ad wl(,B) = ad w(,B) is a root for V in both
G.y.wi and Gyg. Choose root vectors X{3’ X_B3 and coroot H{3 as usual.
Then

so that w l’ w normalizes G We may replace wi by woE M such that
w-iwl 0 E G’ ’YO and WÜIW normalizes T n G’ ’YO as well as G yo. Then
ad(wülw)a = ±a, which proves the lemma.
To proceed with our discussion of the jumps of D1JI’J, we assume

a noncompact. According to the lemma, if ù)a is also noncompact we
may replace w in the summation (2) by an element 8 of Norm(M, T)
such that Ba = :!:: a. If the Weyl reflection Wa is realized by Wa in G
then replacing B by wa8 does not change the class in 2(T); hence we
may assume that Sa = a. If Wa cannot be chosen in G then the class

of was is distinct from that of 8 in ÇJ)(T). However, we will observe
that the terms in (2) corresponding to these two classes coincide for an

appropriate choice of D.
It is convenient at this point to indicate the final "jump" formula.

We will observe the following conventions. Firstly, the system I’ of
positive imaginary roots for T must be adapted to a; that is, 1+
contains all imaginary roots 13 for which (Q, a) &#x3E; 0; as before, L =
(L I3EI+ Q)/2. Let s be a Cayley transform with respect to a (in the
sense of Section 2). Recall that s embeds S(T) in S(Ts) (Proposition
2.7). Hence MH the centralizer of S(Ts), is contained in (M)s. Then s
induces a bijection between the set of imaginary roots 13 for Ts and
the set of imaginary roots for T perpendicular to a. Define

To fix a Haar measure on Ts, suppose that the measure dt on T is
defined by the differential form wo /B wi on t, where Wo, wi are

left-invariant forms on CHa, (CHa).l respectively, of highest degree
and commuting with complex conjugation. Then s transports ilVo /B lVI
to a form on fs, which we may use to define a Haar measure (dt)S on
T,. Finally, if D E 3" then DS will denote the image of D under the
isomorphism fi  fis induced by s. Also, we will replace D by D, the
image of D under the automorphism of 3- induced by H --&#x3E; H + L(H)I,
H Et ; if D’ E fis then D’ will be the image of D’ under the automor-
phism of fis induced by H’ - H’ + is (H’)I, H’e t,.
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LEMMA 4.3:

PROOF: Note that the right-hand side is well-defined (since yô E
(TS) ég) and independent of the choice of Cayley transform s. Hence

we will assume that s is standard; that is, that s is the image of

1 1 - i] under some fixed homomorphism of SL2 into G, asX/2 - i 1

defined in Section 2. The image of SL2(R) under such a homomor-
phism is G o, the (Euclidean) connected component of the identity in
G;o; the image of the standard compact Cartan subgroup is B+ =
T n G yo and the image of the standard split Cartan subgroup is

A + = Ts n G yo. Also T = ZB+ and ZA + has finite index in Ts, Z

denoting the center of Gyo. We will need the following proposition.

PROPOSITION 4.4: (1) If úJa can be realized in G then

(2) If (JJa cannot be realized in G then

PROOF: Let g E GYO. Then there exists go E G yo such that gog

normalizes B+. Then also gog normalizes G’o and TnG Hence
goga = ± a. If wa E Gyo represents lJ)a then it follows that either wagog
or gog lies in T. If Wa cannot be chosen in G then gog E T C ZG+ so
that (2) follows. If wa can be chosen in G, and hence in Gyo’ then
[G : ZG+ 1 = 2 since, clearly, WaÉ ZG00FFo. Again, suppose g E Gyo. Then
there exists gi E G+ such that gtg normalizes A+. Arguing as before,
and observing that lJ)sa can be realized in G+ we obtain g E G+ T,.
This implies [Ts : ZA+] = 2, which completes the proof.
Now fix 6 E Norm(M, T) such that Sa = a. Then Gyô = Gyo and

ad 81Gyo is defined over R. Hence 8 normalizes both G+ A and Z; in
particular, -y’6 0 E Z, the center of Gyo. We will need the following
(immediate) observation: s&#x26;s-1,6-1 E Gyo and s&#x26;s-’&#x26;-’: T" ---&#x3E; T, is

defined over R, for this implies that s8s -1 = g08t, go E Gyo’ t E Ts.
The next proposition can be deduced from [6]. However it is easy
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to write down a similar direct proof; we include the argument for the
sake of completeness.

PROPOSITION 4.5: 1

where d(a) = 2 if úJa can be realized in G and d(a) = 1 otherwise.

PROOF: Because of the continuity of the map f - 1fI’[ between the
Schwartz spaces of G and T ég (cf. [6]) it is enough to verify the lemma
in the case that f has compact support.

Pick a neighborhood C of the origin in t as in [26, volume 2, page
228]. Let N = exp 0; y E yoN is regular in G if T’oly is regular in G...
On fixing Ho E r such that yo = exp Ho, the functions ç" Ç/3/2, etc., are
well-defined on yoN. Then

on yoNreg, where

and

Similarly, define

and

for regular y in a suitable neighborhood of yo in Ts.
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A simple inductive argument shows that there are operators Cr,

Dr E 3- such that

and

Then

since FI is C°° around yo. On the other hand

Hence, to prove the proposition, we have only to check that

For (A), note that if B is a root in 1+ distinct from a and not

perpendicular to a then so also is (3’ = - Wa({3); 8’ 0 6 and s{3, s{B ’ are

complex conjugate roots in T, (recall that 1+ is adapted to a). A

straightforward calculation then yields the desired formula.
For (B), suppose that the support of f lies in the compact set C.

Choose a compact set C in GIG’YO so that g’Y8g-1 E C (y E yoN, g E G)
implies that gGyo E C. Fix t/J E C;(G) so that

and define
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for h E Gyo. If the Haar measure dh on Gyo is chosen suitably, then
v f E C;(Gyo) and

f or y E yoNreg. Similarly,

for regular y near yo in T,.
For x E G’Y{) define v1,X(h) = v1(xhx-I), h E G... Let x range over a set

of representatives for G,IZG’. Then

where yol" = zb, z E Z, b E B+. Concerning the normalization of

measures, we fix a Haar measure on the standard compact Cartan

subgroup of SL2(R); we transport measures via the homomorphism
SL2 --&#x3E; G, and given measures on a group and subgroup we use the
quotient measure on the quotient; conversely we use product
measures on products. This, together with our previous choices, fixes
the measure on each of the groups we will consider. Now write

Dr = D(’) - D(2) where D(’), D(2) are invariant differential operators on
B+, Z respectively. Then

where

Since 0;0 = SL2(R) (or SL2(R)/:tI) we have only to recall the cal-
culations for that group to obtain

where

for a E A +. Since we obtain
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where

for regular y near yo in Ts. But

so that

Hence (B) is verified and the proof of Proposition 4.5 is complete.
For the proof of Lemma 4.3 we need one more proposition.

Consider set of all classes in D(T) which contain a representative 8 in
Norm(M, T ) for which Sa = ± a. There is a well-defined action of the

group (1, on this set, given by G&#x26;T --&#x3E; GúJa8T. Let D a(T) be the set
of orbits. If úJa is realized in G then each orbit has just one element
and if W« is not realized in G each orbit has two elements. Since s

embeds S(T) in S(Ts) it follows that w - s -’£os maps Norm(M,, TTJ to
Norm(M, T).

PROPOSITION 4.6: The map úJ S-lúJS induces a bijection
a(T).

PROOF: Suppose that g E Norm(M,, T,). Then ad(s-’g-’s) fixes a
and hence maps GI, to GYo. This implies that ad(s-’g-’s)(yo) lies in
Z(G’Y(}) and hence gs-’g-’s E G,. There is h E G, such that hgs-’g-’s
normalizes T. Hence either hgs-’g-’s or hgs-1g-1SúJa lies in T ; that is,
either ad(s-lgs)/T = ad(hg)lT or ad(úJas-lgs)/T = ad(hg)/ T. This im-
plies that the map which sends the class of W in qj)(Ts) to the orbit of
s-’ws is well-defined. Clearly the map is surjective. To complete the
proof it is enough to show that if g E Norm(M, T) and ga = ± a then
the action of sgs-’ on TS can be realized in G. This follows easily
from an argument similar to that given above.
Combining Lemma 4.2 and Propositions 4.5 and 4.6, we may now

complete the proof of Lemma 4.3. If úJa is realized in G then the
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result is immediate:

where 5 ranges over a complete set of representatives, each fixing a,
for the classes in 9J(T) containing an element fixing a,

Suppose then that Wcx cannot be realized in G. Suppose that DúJa =

- D. Then since

it follows that both sides of the equation in the statement of Lemma
4.3 are zero. Hence we may assume that D"OE = D. But then a

computation shows that

so that

The rest of the proof is immediate.
We have now shown the necessity of (I) to (IIIb) in the following

theorem.

THEOREM 4.7: Suppose that for each Haar measure dg on G,
Cartan subgroup T and Haar measure dt on T we are given a function
y - -P’(y, dt, dg) on Treg. Then there is a Schwartz function f on G
such that

for all T, y, dt and dg if and only if:
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(a) if Yo E T - T:eg is semiregular and i (yo) = 1 wherewa is compact
for each w E il(M, T) then

for each D E J,

(b) if Yo E T - T:eg is semiregular and i (yo) = 1 where a is noncom -
pact then

for each DEfi.

Recall that

In (III) and (IIIa) the choice of 1+ is arbitrary; in (IIIb) the chosen 1+
must be adapted to a. The conventions for D, IY, (dt)S and RT, are as
before.

Suppose that {CP T ( , dt, dg)) satisfies (I)-(III); (III) implies that the
terms in (IIIa) and (IIIb) are well-defined. Moreover, for any imaginary
root a, if

for all semiregular yo such that Ça ( Yo) = 1 then 11, Textends to a C°°
function around each such yo (irrespective of the choice for 1+); if (*)
remains true as a ranges over all imaginary roots then each pT extends
to a Coo, and hence a Schwartz function on T (cf. [26]). Also, from (II) we
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have

for w E fl(M, T), the imaginary Weyl group for T. This enables us to
compute

in the case yo is semiregular and ça( ’)’0) = 1 with a compact but some
lùa noncompact. It follows then that 1JI’T, satisfying (I)-(IIIa), will be a
Schwartz function on T if the right-hand side in (IIIb) is zero for all a, yo
as in (IIIb). Finally, note that if D is skew with respect to the Weyl
reflection for a then (II) implies that (IIIa) is true for D and that both
sides of (ÎlIb) are zero; if D is fixed by the Weyl reflection for a then

so that (IIIa) becomes

and (IIIb) becomes

Now if {l/JT( , dt, dg)l is any family of functions on the various Treg
define ro to be the least of the integers T for which OT( dt, dg) --- 0 if

dim)S(T) &#x3E; T. Then, arguing by induction on ro we see that to prove
Theorem 4.7 it is sufficient to show the following lemma.

LEMMA 4.8: Fix a Cartan subgroup To and suppose that for each T

conjugate to To and for each Haar measure dt on T and dg on G we
are given a function O ’( , dt, dg) on Treg satisfying (1), (II) and

(III’) pT ( , dt, dg) extends to a Schwartz function on T.

Then there exists a Schwartz function f on G such that

(a) l/J T ( y, dt, dg) = O %y, dt, dg), Y E Treg, for all such T, dt

and dg, and
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PROOF: Suppose that f 0’(, dt, dg)l satisfies (1), (II) and (III’). We
have only to find f satisfying (a) and (b) for one choice of T, I+, dt and dg.
Hence we will assume that T, dt and dg satisfy the conditions in [6];
implicit is a certain choice of maximal compact subgroup K of G. The
choice of 1+ is arbitrary. Also we define the split component A of M and
the reductive subgroup °M as in [6, sections 2 and 3]; M = °MA,
°M n A = (1 ) and T = ° TA, where ’T=,m H T is a compact Cartan
subgroup of °M. Thus, if 3i denotes the group of characters on °T and a*
the (real) dual of log A then the Fourier transform " of 1/1’ =

1/I’T ( , dt, dg) is a Schwartz function on 3i x a*. More precisely, we need
the following: for each A E ae the function v - 1/I’V(A, v) belongs to
C6?(a *), the space of Schwartz functions on a*, and if N is a continuous
seminorm on C6?(a*) then the numbers NA = N ( v - 1/I’(A, v)) satisfy

for each polynomial p. (lA 1) denotes the length of log A which is defined
relative to some fixed positive-definite bilinear form on °tn derived
from the Killing form on the derived subalgebra tnt). We may choose the
Haar measure on d* so that

for tE"T, aEA.
Let to E il(M, T). Then by (II) we have that

which implies that

Pix A G 3i and consider
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According to (3) we can write this as

Let O(A) = {lùAçlùL-L; lù E [J(M, T)} and C be the closure of the

chamber in (’t)* dominant with respect to I+. Clearly (4) vanishes unless
L + log A is regular with respect to [J(M, T) or, equivalently, unless
é n log((9(A)) is nonempty. Hence (2) may be rewritten as

where

Let 29 = MBNorm(G, M); SB is a finite group and for each element
we may pick a representative s normalizing T, °T and A. Then

here det s is the signature of s with respect to 1+ (cf. [6]). Fix A such
that log A E C and consider

This may be written as

For each s, log(C(sAe,,-,» meets C and, conversely, each nonempty
0(-) can be written as 0(sAe,,-,) for some choice of A with log 7l E
C. Hence if we sum (5) over each C(sAe,,-,), s G SB, and then over
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A with log A E C then we obtain Ml ’P. We conclude then that

where

Note that, up to a constant, RTly(A, v) coincides with the restriction
to T of our character XCP’ cp denoting the parameter attached to the
d(T)-orbit of Ae - the (well-known) computation for XCP is given in
[23].
Let (C(G) denote the space of Schwartz functions on G. If X, Y

are in the universal enveloping algebra of q and m &#x3E; 0 set

(a, E are defined as usual (cf. [6]).

PROPOSITION 4.9: Fix X, Y, m. Then there is a polynomial p, a
continuous seminorm N on W(a*) and for each A with log ll E C a

function f(A ) E %(G ) such that

Lemma 4.8 follows from Proposition 4.9, for, assuming Proposition
4.9, we may define

From (1) it follows that so that
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f E W(G). Moreover, on any Cartan subgroup T’

because of the continuity of the map f ---&#x3E; RT’O’F of C(6(G) into C(6(T;eg)
(cf. [6]). Hence f fulfills the requirements of Lemma 4.8. It remains
then to prove Proposition 4.9.

Let 7T be the restriction to °M of the square-integrable representation
of M attached to Ae" (7r depends only on A).

PROPOSITION 4.10: There is a polynomial p with the following
property : for each A there exists an irreducible unitary representation
o-(A) of K contained in Ind(ir K n M, K n M, K) and such that

11"A &#x3E;11 * p(JA 1).

Here denotes the length of the highest weight. The proposition is
immediate consequence of [24, Lemma 4.4]. A proof using [22] (or [9])
and an elementary argument can also be given.
Let eA be the u(A)-isotypic subspace of Ind(7r ) K r1 M, K m M, K)

and p be the projection of §A onto some irreducible summand; attach to
p the function f/lp of [8, section 7]. Let (T, V) be that subrepresentation of
the natural double representation of K on C°°(K x K) determined by
o-(A), as in [8, section 7]. Recall that f/lp is a V-valued function on °M,
spherical with respect to r K fl M. We consider now the wave-packet

here P is some parabolic subgroup with Levi component M,
E(P, Qlp, v, -) is the Eisenstein integral for ip, relative to P and &#x3E; (A, v)
is as in [8]. According to [8, section 26] FA E W(G, V) and

where vo = (c/d*) f Kkt/Jp(l)k-Idk, c being a constant and d’fT the formai
degree of ir. We now choose E V* such that e(vo) = 1 and set

f(A) = ((FA). Because bA 0 (0) we have f kl/lp(l)k-Idk  0 (cf. [8, section
24]), so thatf(A) is well-defined. It is clear thatf(A) satisfies (1); also (2)
follows from [7, section 13], (cf. [8, section 24]). For (3) we have, by [1],
that
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where N is some continuous seminorm on 16(a*), with N,, defined as
before, PI is a polynomial, Il fPp 112 = (f M /I«/1p/l2)1/2 and Ilell is the usual
norm of e EE V*. But ""’p" equals (degu(A»ld1T-[8, section 9], which
is dominated by a polynomial in lA 1 (cf. [8, section 23]). Hence if
dim V &#x3E; 1 we have only to choose e such that IItll  1 to obtain (3).
If dim V = 1 then Ilell = /lvo/l-I = d*/c; since y’ d1T is dominated by a
polynomial in JA 1, Proposition 4.9 is proved.
Our proof of Theorem 4.7 is now complete. We turn then to the

proof of Theorem 4.1. We have to show that the assignment

satisfies the conditions of Theorem 4.7. Only (IIIa) and (IIIb) are
not immediate.

Fix a Cartan subgroup T’of G’ and an imaginary root a’ of T’.

Suppose first that a’ is noncompact. Fix a Cayley transform s’ with

respect to a’. If T’ does not originate in G then neither does T2 (cf.
Section 2) and so we are done. If T’ does originate in G then there are
two cases. First, suppose that T2 also originates in G. Assume that

tk,: T --&#x3E; T’ and iPy: T T’ SI are defined over R. Then

y- 1 0 ad s’- tA,: T --&#x3E; T* can be realized by an element s of G and
moreover g-1 s realizes the Weyl reflection with respect to «P; 1( a’).

PROPOSITION 4.11: Suppose that a is an imaginary root of T in G
and that there exists s E G such that s-ls realizes úJa. Then there exists
w E f2(M, T ) such that wa is noncompact.

Recall that M is the centralizer in G of the R-split part of T.

PROOF: Clearly Ts 
s is defined over R and the root sa of TS is real.

Hence, by a standard construction (cf. [25]), we can find u, T’ such that
ad u : T’---&#x3E; TS, (3 = u-’sa is noncompact and ü-1u realizes úJf3. But then
u -1 s : T - T’ is defined over R since, on T, s = Cùf3U-1 SúJa = u -’s.
Therefore, by Theorem 2.2, there exists g E G mapping T’ to T and
w E f2(M, T) such that gu -’sa = úJa. Since gu -’sa is noncompact the

proposition is proved.
Returning to our proof of Theorem 4.1, we may then replace tpx by
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lix, where now bx,’(a’) = a is noncompact. The element s, defined with
qix, in place of qix, is thus a Cayley transform. It is straightforward to
check now that the property (IIIb) for stable orbital integrals on G
implies that (IIIb) is satisfied in the present case.

Next, if T’ but not T’ s, originates in G then for any tpx: T --&#x3E; T’

defined over R we must have that a = l/Il(a’) is compact, together
with all wa, W E f2 (M, T); for, otherwise we would obtain a con-
tradiction. In this case (IIIb) follows from (IIIa) for stable orbital
integrals on G.
The remaining case, that each wa’ is compact, is, in fact, vacuous

because G’ is quasi-split. Nevertheless, without assuming this, we can

verify (IIIa) using (IIIa) for stable orbital integrals and the

proposition just proved.
This completes the proof of Theorem 4.1.

5. Stable tempered distributions

We need a few remarks about those distributions which are

expressed as sums of stable orbital integrals. More precisely, let W(G)
be the space of Schwartz functions on G. Then we regard the space
of tempered distributions on G as the dual of W(G), equipped with
the topology of simple (pointwise) convergence. We call a tempered
distribution stable if it lies in the closed linear subspace generated by the
distributions f ---&#x3E; Oy), Y E Greg (cf. [20]). A stable tempered dis-

tribution is invariant.

Suppose that e is an invariant tempered distribution which is finite
under the action of 8, the center of the universal enveloping algebra
of (b. Let Fe denote the analytic function on Greg which represents
0 (cf. [6]). Then:

LEMMA 5.1: O is stable if and only if

PROOF: Suppose that Fe satisfies this condition. Then an ap-

plication of the Weyl Integration Formula implies that

for each f E C,(G), where CT depends only on T. But Fg satisfies an
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inequality

for some (C &#x3E; 0, r a 0 ([6]). This ensures that the integrals on the right
converge absolutely for f E cg(G) from which it follows that O is

stable.

For the converse, fix yo E Greg and write T for the Cartan subgroup
containing yo. Choose an open neighborhood N of yo in T fl Greg
sufficiently small that NUN"=0 for C1J E .sil(T)IT. Then the map
Nô) x GI T’---&#x3E; (N )G given by (t, g) ---&#x3E; tg is a diffeomorphism. If f E

computation shows that

Hence e(f(Cù» = O(f ) from which it follows that Fe(-yo) = Fe(-yô), as
desired.

In section 3 we attached to each tempered parameter ç a tempered
invariant eigendistribution Xcp.

LEMMA 5.2: X, is stable.

PROOF: Suppose firstly that ç is discrete. Let G" be the simply
connected covering group of the derived group of G and p : G - ---&#x3E; G

be the natural projection. Since the image of G- under p is Gt, the
connected component of the identity in the derived group of G, we
see from the construction outlined in Section 2 that cp determines (in
fact, is built up from) a parameter ’P- for G-. For each Cartan

subgroup T of G set T - = p-I(T). If x E A(T) then p-I(X) Ç d(T-);A
this implies that ad x maps T n G’ into G t. A simple argument with
characters now shows that we need only verify that X,- is stable. But,
in the notation of [4], this is the assertion that the distribution 0*, À a

regular character on a compact Cartan subgroup of G", is invariant
under the imaginary Weyl group of each Cartan subgroup T-; this
was proved in [4] (cf. also [25]).
Now if cp is any tempered parameter, attach to ’P a Cartan subgroup

To and a parabolic subgroup Po = MoNo such that XP =

X(lnd( 1Tp 0 1No’ Po, G» (cf. Section 2). Note that X( 1Tp) = X’PO’ cpo

being the discrete parameter for Mo described in Section 2. We will
use X, to denote also the function on Greg representing Xp. If T is a
Cartan subgroup of G not G-conjugate to a Cartan subgroup con-
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tained in Mo then X, vanishes on T. Hence we may assume that

T C Mo. According to the formula for principal series characters, e.g.
[23], we may write

Suppose that oi E H(T); we may as well assume that úJ normalizes T
and centralizes its R-split part. Then W E Mo and, for each s E

(x E G : xTx -’C Mol, sws -’ belongs to Mo nd(T’) and normalizes T s.

Since ’Po is discrete we may apply the result of the last paragraph; this
together with the invariance of C under Mo implies that X’P( yCù) =
X’P( ’Y), y E Treg. Hence the lemma is proved.
Our method of characterizing stable orbital integrals in Section 4

leads easily to the following lemma.

LEMMA 5.3: Let f E Cf}(G). Then all stable orbital integrals for f
vanish if and only if all x’P(f) vanish, ’P a tempered parameter.

PROOF: Suppose that all stable orbital integrals for f vanish. Then
applying the Weyl Integration Formula as in the proof of Lemma 5.1
we obtain x’P(f) = 0, for all tempered ç.

Conversely, assume that x’P(f) = 0 for each ç. Fix a Cartan sub-
group T and suppose that W ) - 0 on each Cartan subgroup T’ strictly
greater than T in the ordering of Section 2. We shall prove that this
implies that W) - 0 on T. An inductive argument then completes the
proof of the lemma.
We use the notation of Section 4. In place of 1JI’T consider

Because of our assumption, S extends to a Schwartz function on T.
Moreover, computing the Fourier transform of H we obtain im-
mediately that gV(A, v) = 0 unless log C(A) meets C. If log O(Ã) does
meet C then

where c is a constant and cp is the parameter attached to the



41

d(T)-orbit of Aoe-iv, Ao being that character for which log Ao E
C D log O(Ã). Hence E == 0 and so 0’ f vanishes on T, as desired.

6. Correspondences

Recall that G is an inner form of the quasi-split group G’ and
qi: G ---&#x3E; G’, fixed for once and for all, is an isomorphism for which
qil,-’ is inner. Theorem 4.1 assigns to each f F-,’C(G) a function

f’ E C(G’). Although f’ is not uniquely determined, there is a well-

defined map, dual to the correspondence (f, f’) defined on stable

tempered distributions:

PROPOSITION 6.1: If 0’ is a stable tempered distribution on G’ then
O: f --&#x3E; 0’(f’) defines a stable tempered distribution on G.

PROOF: Note that O is well-defined. A version of the Banach-

Steinhaus theorem [16] implies that 0 is continuous. Clearly then 0 is
a stable tempered distribution on G.

Let 3 denote the center of the universal enveloping algebra of W;
similarly, attach 3’ to @’. The twist Oi induces isomorphism z- z’
between 3 and 2’ and, in duality, an isomorphism À’- À between
characters on 3’ and characters on 3. Recall also the correspondence
( y, y’) between Greg and G reg.

LEMMA 6.2: If 0’ is an eigendistribution with infinitesimal charac-
ter A’ then e is an eigendistribution with infinitesimal character À.
Moreover,

PROOF: For the first statement, it is enough to show that, for each

z e 3, zO is the image of z’@’ under our map; to show this, it is

enough to show that we may take z’f’ for (zf)" since the isomorphism
z - z’ preserves the adjoint operation.
We use the notation of Section 4. Let T be a Cartan subgroup of G.

Then

where F is the Harish-Chandra isomorphism of 3 with the algebra of
n( G, T)-invariants in fi; indeed, this follows easily from the cor-
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responding formula for ’Ff [6]. Suppose that o/x: T --&#x3E; T’ is defined

over R. Then the Harish-Chandra isomorphism for 3’, T’, is given by
z’ 1 ---&#x3E; (r(z»’ and we have

where y’ = «Px ( ,,) and on T’ we have used the ordering of the im-
aginary roots induced by Ç from that used on T. Hence we may take
z’f’ for (zf)" as desired.
For the second statement, we observe that

For

where g)o(T) = {g E G : gTg-1= T)/ T, and the isomorphism «Px induces
a bijection between g)o(T) and g)o(T’). To complete the proof of the
lemma we need just apply the Weyl Integration Formula to e(f) =
Je f(g)Fe(g)dg, using the observation. We omit the details.

Finally, we may verify the character identities. As usual, XCP will

also denote the function on Greg which represents Xcp. Recall that 2qo
is the dimension of the symmetric space attached to G-.

THEOREM 6.3: If ç is a tempered parameter and y’ E G;eg originates
from y E Greg then

PROOF: According to Lemma 6.2 we have only to show that Xq&#x3E; is

the image of (-l)QG-qG’Xq&#x3E;’ under our map on stable tempered dis-

tributions.

Suppose that cp is discrete and that G is semisimple and simply-
connected. Then we have, by Lemma 6.2, that the image of

(-l)Qa-QG’Xq&#x3E;’ is a stable tempered eigendistribution on G given by the
function y - (-l)QG-QG’Xq&#x3E;{ y’). A calculation shows that this function
coincides with y, on any compact Cartan subgroup of G. Hence
the assertion of the theorem is an immediate consequence of the
characterization of the distributions "O*" ([4], cf. also [25]).
Next we drop the condition on G, but retain the assumption on cp. If

p is the natural projection of G- (the simply-connected covering
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group of the derived group of G) onto the derived group of G and p’
the corresponding map for (G’)- then there is a unique isomorphism
t/J-: G - (G’)- satisfying p’t/J- = t/Jp; ;fr-(t/J-)-l is inner. The result for
G- and a simple character computation then imply the character
identity in the present case.

Finally, if ç is any tempered parameter, and G arbitrary, attach To,
Mo and Po to ç in the usual way. As remarked earlier, we may assume
that the restriction of t/J to To is defined over R. Then T Ó = t/J( To),
MÓ = tP(Mo) and Pô = li(Po) are attached to ’P’. Moreover, we can take
for (’P’)o the image ’PÓ of ’Po under the map induced by tp on parameters
for Mo. Fix a Cartan subgroup T of G and an element x of G’ such
that iPx: T &#x3E; T’ is defined over R. Recall that if T is not G-conjugate
to a Cartan subgroup of Mo then X, vanishes on T. In this case T’ is
not G’-conjugate to any Cartan subgroup of M’, so that xi vanishes
on T’. Suppose that T C Mo. Then

in the notation of Section 5. We may as well assume that x E Mi so
that T’ ç M’. Then

where C’ and M’ are defined relative to G’ and M’. The theorem is
now an easy consequence of applying the first part of our proof to the
pair XCf’O’ XCPÓ and using the following three observations.

PROPOSITION 6.4: There is bijection between M and M’ with the
following property: if s represents a class in M then there exists s’

representing the image of this class in M and such that

PROOF: By this equation we mean precisely: if s EE fx E G: xTx-I
ç Mo) then there exists s’ E {x e G’: xT’x-’C MÓ} and xo E Mo with f/lXo:
TS  (Ts)’ = f/lXo(TS) defined over R and such that f/lXo( yS) = (f/lx( y»S’.

Fix s E (x E G : xTx-I C Mo) and write f/lxo ad s -’as Qlz, z E G’. Then Qlz
maps T to T’ and since T c Mo C Po the images of Po and Mo under Qlz
are defined over R. Hence there exists t’ E G’ such that f/lz(Po) = f/lt’(Po)
and f/lz(Mo) = f/lt{Mo) [2]. Set xo = (t,)-1 z and s’ = (t,)-I. Then it follows
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easily that s’, xo have the desired properties. That the correspondence
s - s’ induces a bijection 2M ---&#x3E; e’ is also straightforward.

PROPOSITION 6.5: 1

PROOF: This follows immediately from our definitions.

PROPOSITION 6.6: qMo - qG = qmé - qG’ ·

PROOF: We may assume that G and G’ are semisimple. Let MA
denote the derived group of Mo and choose a maximal compact
subgroup K of G such that K fl Mô is maximal compact in Mô (cf. [6]).
By definition, 2qG = dim(G/K). But G = KMoNo so that

On the other hand,

But dim Mo = dim Z(Mo) + dim MA and

where, as usual, S( To) denotes the maximal R-split torus in To. Hence

qG - qMo = (dimc No + dimc S(To))/2. Since t/1 maps No to NÓ and S(To)
to S(TÓ) the proposition is proved.

In proving Theorem 6.3 we have obtained the following result.

COROLLARY 6.7: The map Xlp’ Xlp is dual to the correspondence
(f, f’) between %(G) and %(G’); that ;s,
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