COMPOSITIO MATHEMATICA

D. W. CURTIS Hyperspaces of noncompact metric spaces

Compositio Mathematica, tome 40, nº 2 (1980), p. 139-152 <http://www.numdam.org/item?id=CM 1980 40 2 139 0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 40. Fasc. 2, 1980, pag. 139–152 © 1980 Sijthoff & Noordhoff International Publishers – Alphen aan den Rijn Printed in the Netherlands

HYPERSPACES OF NONCOMPACT METRIC SPACES

D.W. Curtis

0. Introduction

For a metric space X, the hyperspace 2^X of nonempty compact subsets and the hyperspace C(X) of nonempty compact connected subsets are topologized by the Hausdorff metric, defined by $\rho(A, B) =$ $\inf\{\epsilon : A \subset N_{\epsilon}(B) \text{ and } B \subset N_{\epsilon}(A)\}$. It is easily seen that the hyperspace topologies induced by ρ are invariants of the topology on X. It is known that $2^X \approx Q$, the Hilbert cube, if and only if X is a nondegenerate Peano continuum, and $C(X) \approx Q$ if and only if X is a nondegenerate Peano continuum with no free arcs [6]. In this paper we obtain various characterization theorems for hyperspaces of noncompact connected locally connected metric spaces.

THEOREM 1.6: 2^{X} is an ANR (AR) if and only if X is locally continuum-connected (connected and locally continuum-connected).

THEOREM 3.3: $2^X \approx Q$ \point if and only if X ix noncompact, connected, locally connected, and locally compact.

THEOREM 4.2: X admits a Peano compactification \hat{X} such that $(2^{\hat{X}}, 2^{X}) \approx (Q, s)$ if and only if X is topologically complete, separable, connected, locally connected, nowhere locally compact, and admits a metric with Property S.

Analogous results are obtained for C(X). Additionally, we discuss two examples relating to local continuum-connectedness, and an example relating to Property S.

D.W. Curtis

1. Hyperspaces which are ANR's

A growth hyperspace \mathscr{G} of a metric space X is any closed subspace of 2^x satisfying the following condition: if $A \in \mathscr{G}$ and $B \in 2^x$ such that $B \supset A$ and each component of B meets A, then $B \in \mathscr{G}$. Both 2^x and C(X) are growth hyperspaces of X. Another growth hyperspace of particular interest is $\mathscr{G}_A(X)$, the smallest growth hyperspace containing $A \in 2^x$. Thus $\mathscr{G}_A(X) = \{B \in 2^x : B \supset A \text{ and} each component of B meets A\}$. Growth hyperspaces of Peano continua were studied in [4].

LEMMA 1.1: (Kelley [11]). Let A, $B \in 2^X$ such that $B \in \mathcal{G}_A(X)$ and B has finitely many components. Then there exists a path $\sigma: I \to \mathcal{G}_A(B)$ such that $\sigma(0) = A$ and $\sigma(1) = B$.

DEFINITION: A metric space X is continuum-connected if each pair of points in X is contained in a subcontinuum. X is locally continuum-connected if it has an open base of continuum-connected subsets.

Note that in verifying the local property it is sufficient to produce, for each neighborhood U of a point x, a neighborhood $V \subset U$ of xsuch that each $y \in V$ is connected to x by a subcontinuum in U. For topologically complete metric spaces, the properties of local connectedness, local continuum-connectedness, and local path-connectedness are equivalent, since every complete connected locally connected metric space is path-connected. Examples given later show that in general these properties are not equivalent.

LEMMA 1.2: Let $A \in 2^x$, with X a locally continuum-connected metric space. Then for arbitrary $\epsilon > 0$ there exists $\tilde{A} \in \mathcal{G}_A(X)$ such that $\rho(A, \tilde{A}) < \epsilon$ and \tilde{A} has finitely many components.

PROOF: For each $n \ge 1$ choose $\epsilon_n > 0$ such that, whenever $x \in A$ and $y \in X$ with $d(x, y) < \epsilon_n$, there exists a continuum in X connecting x and y with diameter less than min{ $1/n, \epsilon$ }. For each n let $A_n \subset A$ be a finite ϵ_n -net for A. Then for each $p \in A_{n+1}$ there exists a continuum L_p in X with diameter less than min{ $1/n, \epsilon$ }, connecting p and some point of A_n . Set $\tilde{A}_1 = A_1$ and $\tilde{A}_{n+1} = \bigcup \{L_p : p \in A_{n+1}\}$ for each $n \ge 1$. Then $\tilde{A} = cl(\bigcup_{i=1}^{n} \tilde{A}_n) = \bigcup_{i=1}^{n} \tilde{A}_n \cup A$ has the required properties (note that each component of \tilde{A} meets the finite subset A_1).

LEMMA 1.3: Let X be a connected and locally continuum-con-

nected metric space. Then every compact subset is contained in a continuum.

PROOF: Let A be a compact subset of X. There exists by Lemma 1.2 a compact set $\tilde{A} \supset A$ such that \tilde{A} has finitely many components. It is easily seen that X is continuum-conected. Thus the components of \tilde{A} may be connected together by the addition of a finite collection of subcontinua of X, thereby producing a continuum $B \supset \tilde{A} \supset A$.

LEMMA 1.4: If X is a locally continuum-connected metric space, then every growth hyperspace G of X is locally path-connected.

PROOF: Given $A \in \mathcal{G}$ and $\epsilon > 0$, choose $\delta > 0$ such that whenever $x \in A$ and $y \in X$ with $d(x, y) < \delta$, there exists a continuum in X of diameter less than ϵ connecting x and y. We claim that for any $B \in \mathcal{G}$ with $\rho(A, B) < \delta$, there exists a path $\sigma: I \rightarrow \mathcal{G}$ between A and B, with $\rho(A, \sigma(t)) < \epsilon$ for each t. We may assume by Lemmas 1.1. and 1.2 that each of A and B has finitely many components. Adding a finite collection of continua to $A \cup B$, which connect each component of A to B and each component of B to A, and all of which have diameter less than ϵ , we obtain an element $C \in \mathcal{G}_A(X) \cap \mathcal{G}_B(X)$ such that $\rho(A, C) < \epsilon$. Then paths between A and C, and B and C, given by Lemma 1.1, will provide the desired path.

LEMMA 1.5: Let $\mathcal{D} \subset 2^X$ be compact and connected, and let $A \in \mathcal{D}$. Then $\cup \mathcal{D} \in \mathcal{G}_A(X)$.

PROOF: Clearly, $\bigcup \mathcal{D}$ is a compact subset of X and contains A. We show that each component of $\bigcup \mathcal{D}$ meets A. Let $x \in D \in \mathcal{D}$ be given. For each $\epsilon > 0$ there exists an ϵ -chain $\{D_i\}$ in \mathcal{D} between D and A, and therefore an ϵ -chain $\{q_i\}$ in $\bigcup \mathcal{D}$ between x and some point of A. Since A is compact, there exists $a \in A$ such that for each $\epsilon > 0$, there is an ϵ -chain in $\bigcup \mathcal{D}$ between x and a. Then x and a are in the same quasi-component, hence the same component, of $\bigcup \mathcal{D}$.

THEOREM 1.6: If X is locally continuum-connected (connected and locally continuum-connected), then every growth hyperspace G of X is an ANR (AR). Conversely, if there exists a growth hyperspace G such that $G \supset C(X)$ and G is an ANR (AR), then X is locally continuum-connected (connected and locally continuum-connected).

PROOF: We use the Lefschetz-Dugundji characterization of metric

ANR's [9]: a metric space M is an ANR if and only if, for each open cover α of M, there exists an open refinement β such that every partial β -realization in M of a simplicial polytope K (with the Whitehead topology) extends to a full α -realization of K. Thus, let α be an open cover of \mathcal{G} , and assume that the elements of α are open metric balls, with respect to the Hausdorff metric on \mathcal{G} . Take an open star-refinement α' of α . By Lemma 1.4 there exists an open refinement β of α' such that each element of β is path-connected. Then every partial β -realization $f: L \rightarrow \mathcal{G}$ of a polytope K extends to a partial α -realization $g: L \cup K^1 \rightarrow \mathcal{G}$, where K^1 is the 1-skeleton of K. Using Lemma 1.5, we may extend g to a full α -realization $h: K \rightarrow \mathcal{G}$ by the following inductive procedure. Consider an n-simplex σ of K, $n \ge 2$, such that h has been defined over $bd\sigma$. Let $r: \sigma \rightarrow C(bd\sigma)$ be any extension of the natural injection $bd\sigma \rightarrow C(bd\sigma)$. Then define hover σ by setting $h(x) = \bigcup \{h(p): p \in r(x)\}$. Thus \mathcal{G} is an ANR.

If additionally X is connected, then by Lemma 1.3 every compact subset of X is contained in a continuum. Thus for arbitrary A, $B \in \mathcal{G}$, there exists a continuum C containing $A \cup B$, and $C \in \mathcal{G}$. By Lemma 1.1. there exist paths in $\mathcal{G}_A(C)$ from A to C and in $\mathcal{G}_B(C)$ from B to C, hence a path in \mathcal{G} between A and B. Thus \mathcal{G} is path-connected. Since the argument of the preceding paragraph shows that \mathcal{G} is always *n*-connected for $n \ge 1$, it follows that \mathcal{G} is an AR.

Conversely, suppose there exists a growth hyperspace \mathscr{G} of X such that $\mathscr{G} \supset C(X)$ and \mathscr{G} is an ANR. Let $x \in X$ and a neighborhood U be given. Since \mathscr{G} is locally path-connected, there exists a neighborhood V of x such that for each $y \in V$, there exists a path $f: I \rightarrow \mathscr{G}$ between $\{x\}$ and $\{y\}$ with each $f(t) \subset U$. By Lemma 1.5, $\bigcup \{f(t): t \in I\} \subset U$ is a continuum. Thus X is locally continuum-connected. And if \mathscr{G} is an AR, and therefore connected, X must also be connected.

The ANR (AR) characterizations for the hyperspaces 2^{X} and C(X) of a compact metric space X were obtained by Wojdyslawski [15]. These characterizations were extended to complete metric spaces by Tašmetov [13]. Independently, some partial results along these lines were announced by Borges [3].

The following examples show that for noncomplete metric spaces, the property of local continuum-conectedness lies strictly between local connectedness and local path-connectedness.

EXAMPLE 1.7: There exists a connected and locally connected subset of the plane which is not locally continuum-connected.

PROOF: There exist disjoint subsets A and B of the plane E^2 such

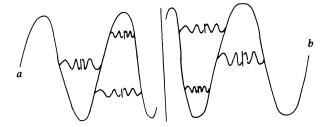
that every nondegenerate continuum in the plane meets both A and B ([10], p. 110). Thus A contains no nondegenerate subcontinuum, and is not locally continuum-connected. However, A is connected and locally connected. Suppose $A = A_1 \cup A_2$ is a separation. Then there exists a closed subset C of the plane separating A_1 and A_2 . Since C cannot be 0-dimensional, it contains a nondegenerate subcontinuum D. Then D must meet A, impossible. Thus A is connected, and the same argument applied locally shows that A is locally connected.

EXAMPLE 1.8: There exists a connected and locally continuumconnected subset of the plane which is not locally path-connected.

PROOF: We begin with the continuum

[5]

$$S = \{(x, \sin 1/x) : 0 < |x| \le 1/\pi\} \cup \{(0,t) : |t| \le 1\}$$



A countable collection $\{S_i\}$ of progressively smaller copies of S is then fitted inside the individual loops of S as indicated, creating local continuum-connectedness on the limit segment $L = \{(0, t) : |t| \le 1\} \subset S$. Then for each *i*, a countable collection $\{S_{ij}\}$ of copies of S is similarly fitted inside the loops of S_i . The infinite iteration of this procedure produces the desired space $X = S \cup (\cup \{S_i : i \ge 1\}) \cup$ $(\cup \{S_{ij} : i, j \ge 1\}) \cup \ldots$

X is connected and locally continuum-connected. However, X is not locally path-connected at any point on a limit segment such as L. It suffices to show that there exists no path in X between the endpoints $a = (-1/\pi, 0)$ and $b = (1/\pi, 0)$. Suppose there exists such a path σ . Then for some *i* (in fact, for infinitely many *i*), σ must contain a subpath σ_i in $S_i \cup (\cup \{S_{ij}: j \ge 1\}) \cup \ldots$ between the corresponding endpoints a_i and b_i of S_i . By the same argument σ_i must contain a subpath σ_{ij} in some $S_{ij} \cup (\cup \{S_{ijk}: k \ge 1\}) \cup \ldots$ between the endpoints a_{ij} and b_{ij} of S_{ij} . Thus the path σ must pass through each member of some nested sequence $(S_i, S_{ij}, S_{ijk}, ...)$. But this is impossible, since the limit point of such a sequence is not included in X.

2. Peano compactifications with locally non-separating remainders

Since $2^{Y} \approx Q$ for every non-degenerate Peano space Y, one way to study the hyperspace of a noncompact space X is to consider, when possible, a Peano compactification \tilde{X} of X, and the corresponding Q-compactification $2^{\tilde{X}}$ of 2^{X} . The procedure works if the remainder $\tilde{X} \setminus X$ is sufficiently "nice". In this section we specify the desired property of the remainder, and establish the conditions under which such a compactification exists.

DEFINITION: A subset A of X is locally non-separating in X if, for each nonempty connected open subset U of X, $U \setminus A$ is nonempty and connected.

Note that if A is locally non-separating, so is every subset of A. It is easily shown that if a locally connected space X has a connected open base $\{U_{\alpha}\}$ such that each $U_{\alpha}\setminus A$ is nonempty and connected, then A is locally non-separating.

The motivation for considering locally non-separating subsets comes from the following pair of results on positional properties of intersection hyperspaces. For $A_1, \ldots, A_n \in 2^X$, we define the intersection hyperspaces $2^X(A_1, \ldots, A_n) = \{F \in 2^X : F \cap A_i \neq \emptyset \text{ for each } i\}$ and $C(X; A_1, \ldots, A_n) = \{F \in C(X) : F \cap A_i \neq \emptyset \text{ for each } i\}$. For any nondegenerate Peano space $X, 2^X(A_1, \ldots, A_n) \approx Q$, and $C(X; A_1, \ldots, A_n) \approx Q$ if additionally X contains no free arcs [7]. A closed subset F of a metric space Y is a Z-set in Y if, for each compact subset K of Y and $\epsilon > 0$, there exists a map $\eta : K \to Y \setminus F$ with $d(\eta, id) < \epsilon$.

PROPOSITION 2.1: Let A be a closed subset of a Peano continuum X. Then $2^{X}(A)$ is a Z-set in 2^{X} if and only if A is locally non-separating in X. More generally, for closed subsets A, B_1, \ldots, B_n of X, $2^{X}(A, B_1, \ldots, B_n)$ is a Z-set in $2^{X}(B_1, \ldots, B_n)$ if and only if A is locally non-separating in X and $B_i \setminus A$ is dense in B_i for each i.

PROOF: Suppose A satisfies the stated conditions, and let $\epsilon > 0$ be given. We must construct a map $\eta : 2^{X}(B_{1}, \ldots, B_{n}) \rightarrow 2^{X}(B_{1}, \ldots, B_{n}) \langle 2^{X}(A, B_{1}, \ldots, B_{n})$ such that $\rho(\eta, id) < \epsilon$. For each *i*, there exists a finite $\epsilon/3$ -net β_{i} for B_{i} such that $\beta_{i} \subset B_{i} \setminus A$. By [7], there

exists an "expansion" map $h: 2^{x}(B_{1}, ..., B_{n}) \rightarrow 2^{x}(\beta_{1}, ..., \beta_{n})$ such that $\rho(h, id) \leq \epsilon/3$. And by [8], $2^{x}(\beta_{1}, ..., \beta_{n}) \approx \text{inv lim}$ $(2^{\Gamma}i(\beta_{1}, ..., \beta_{n}), f_{i})$, where $\{\Gamma_{i}\}$ is a sequence of compact connected graphs in X, with each Γ_{i} containing $\beta_{1} \cup ... \cup \beta_{n}$ in its vertex set, and each bonding map $f_{i}: 2^{\Gamma_{i+1}}(\beta_{1}, ..., \beta_{n}) \rightarrow 2^{\Gamma_{i}}(\beta_{1}, ..., \beta_{n})$ induced by a map $\varphi_{i}: \Gamma_{i+1} \rightarrow C(\Gamma_{i})$ such that $\varphi_{i}(b) = \{b\}$ for each $b \in \beta_{1} \cup ... \cup \beta_{n}$. Thus for some *i* the projection map $p_{i}: 2^{x}(\beta_{1}, ..., \beta_{n}) \rightarrow 2^{\Gamma_{i}}(\beta_{1}, ..., \beta_{n})$ satisfies $\rho(p_{i}, id) < \epsilon/3$.

Let \mathcal{U} be a finite cover of Γ_i by connected open subsets of X with diameters less than $\epsilon/3$. There exists a subdivision $Sd\Gamma_i$ of Γ_i such that each simplex of $Sd\Gamma_i$ is contained in a member of \mathcal{U} . To each vertex v of $Sd\Gamma_i$ we assign a point $\kappa(v) \in \cap \{U \in \mathcal{U} : v \in U\} \setminus A$, with $\kappa(b) = b$ if $b \in \beta_1 \cup \ldots \cup \beta_n$. Then κ may be extended to a map $\kappa: Sd\Gamma_i \to X \setminus A$ such that, for each simplex σ of $Sd\Gamma_i, \kappa(\sigma) \subset U \setminus A$ for some $U \in \mathcal{U}$ with $\sigma \subset U$ (we use the fact that each $U \setminus A$ is connected, locally connected, and locally compact, therefore path-connected). Thus $d(\kappa, id) < \epsilon/3$, and the induced map $k: 2^{\Gamma_i}(\beta_1, \ldots, \beta_n) \to 2^{X \setminus A}(\beta_1, \ldots, \beta_n)$ satisfies $\rho(k, id) < \epsilon/3$. The composition $kp_ih:$ $2^x(B_1, \ldots, B_n) \to 2^{X \setminus A}(\beta_1, \ldots, \beta_n) \subset 2^x(B_1, \ldots, B_n) \setminus 2^x(A, B_1, \ldots, B_n)$ satisfies $\rho(kp_ih, id) < \epsilon$, and $2^x(A, B_1, \ldots, B_n)$ is a Z-set in $2^x(B_1, \ldots, B_n)$.

Conversely, suppose the Z-set condition is satisfied. Then each $B_i \setminus A$ must be dense in B_i , otherwise $2^x(A, B_1, \ldots, B_n)$ has a nonempty interior in $2^x(B_1, \ldots, B_n)$. For each *i*, choose $b_i \in B_i \setminus A$. Given a neighborhood *U* of a point $y \in A$, let *V* be a connected open neighborhood of *y* such that $\overline{V} \subset U \setminus \{b_1, \ldots, b_n\}$. We show that $V \setminus A$ is connected, thus *A* is locally non-separating. Suppose $V \setminus A = V_0 \cup V_1$ is a separation. There exists a continuum *M* in *V* such that $M \cap$ $V_0 \neq \emptyset \neq M \cap V_1$. Let $\mathscr{F} = \{F \in 2^x(M) : F \setminus M = \{b_1, \ldots, b_n\}\}$. Then \mathscr{F} is homeomorphic to the connected hyperspace 2^M , and $\mathscr{F} \subset$ $2^x(B_1, \ldots, B_n)$. For each $\epsilon > 0$ there exists a map $\eta : \mathscr{F} \to 2^x \setminus 2^x(A)$ with $\rho(\eta, id) < \epsilon$. If ϵ is sufficiently small, there exist elements F_0 , $F_1 \in \mathscr{F}$ such that $\eta(F_0) \cap V_0 \neq \emptyset$ and $\eta(F_1) \cap V_0 = \emptyset$, and $\eta(F) \cap bdV =$ \emptyset for every $F \in \mathscr{F}$. Then $\eta(\mathscr{F}) = \{\eta(F) : \eta(F) \cap V_0 \neq \emptyset\} \cup \{\eta(F) :$ $\eta(F) \cap V_0 = \emptyset\}$ is a separation of the connected space $\eta(\mathscr{F})$, impossible.

PROPOSITION 2.2: Let A, B_1, \ldots, B_n be closed subsets of a Peano continuum X. Then $C(X; A, B_1, \ldots, B_n)$ is a Z-set in $C(X; B_1, \ldots, B_n)$ if and only if A is locally non-separating in X and $B_i \setminus A$ is dense in B_i for each *i*.

PROOF: The argument for obtaining the Z-set property is the exact

parallel of the corresponding argument in the proof of Proposition 2.1. For the converse, suppose $C(X; A, B_1, \ldots, B_n)$ is a Z-set in $C(X; B_1, \ldots, B_n).$ Actually. we only use the fact that $C(X; A, B_1, \ldots, B_n)$ has empty interior in $C(X; B_1, \ldots, B_n)$. It is immediate that each $B_i \setminus A$ must be dense in B_i , and $X \setminus A$ must be connected. Thus there exists a connected open set G in $X \setminus A$ such that $G \cap B_i \neq \emptyset$ for each *i* and $\overline{G} \cap A = \emptyset$. Given a neighborhood U of a point $y \in A$, let V be a connected open neighborhood of y such that $\overline{V} \subset U \setminus \overline{G}$, and choose $\epsilon > 0$ such that $N_{\epsilon}(\overline{V}) \subset U$. Let $\mathcal{W} =$ $\{V \mid A, G, W_1, W_2, \ldots\}$ be an open cover of $X \mid A$ such that each W_i is connected and has diameter less than ϵ . By connectedness of $X \setminus A$, we obtain a chain in \mathcal{W} between $V \setminus A$ and G, which in turn leads to connected open sets H and W in X A such that $H \supset G$, $H \cap V = \emptyset$, $H \cap W \neq \emptyset \neq W \cap V$, and diam $W < \epsilon$. Then $V \cup W \subset U$ is a connected open neighborhood of y, and we claim that $(V \cup W) \setminus A$ is connected. If there exists a separation $(V \cup W) \setminus A = V_0 \cup V_1$, with the W contained in V_1 , then $(V \cup W \cup H) \setminus A =$ connected set $V_0 \cup (V_1 \cup H)$ is also a separation. However, there exists a continuum K in the connected open set $V \cup W \cup H$ which meets each B_i , and also meets the open sets V_0 and V_1 . Then K is in the interior of $C(X; A, B_1, \ldots, B_n)$ in $C(X; B_1, \ldots, B_n)$, impossible.

DEFINITION: A metric d for a space X has Property S if, for each $\epsilon > 0$, there exists a finite connected cover of X with mesh less than ϵ .

If X admits a metric with Property S, then X is locally connected. Without added conditions, the converse is not true (see Lemma 3.2 and Example 4.3).

DEFINITION: A metric d for a connected space X is strongly connected if, for each x, $y \in X$, $d(x, y) = \inf\{\text{diam } M : M \text{ is a con$ $nected subset containing x and y}\}$.

A convex metric on a Peano continuum is an example of a strongly connected metric. If X admits a strongly connected metric, then X is locally connected. Conversely, the proof of the following lemma shows that every connected, locally connected metric space admits a strongly connected metric.

LEMMA 2.3: Let X be a connected metric space which admits a metric with Property S. Then X admits a strongly connected metric with Property S. PROOF: Let d be a metric with Property S. Define a topologically equivalent metric d^* for X by $d^*(x, y) = \inf\{\text{diam } M : M \text{ is a con$ $nected subset of X containing x and y}. It is easily verified that <math>d^*$ is a metric function. Since $d^*(x, y) \ge d(x, y)$, every open set with respect to d is open with respect to d^* . The converse is easily established, using the local connectedness of X. And since the diameters of connected subsets are the same with respect to d and d^* , d^* is strongly connected and has Property S.

PROPOSITION 2.4: A connected metric space X has a Peano compactification \tilde{X} with a locally non-separating remainder $\tilde{X} \setminus X$ if and only if X admits a metric with Property S.

PROOF: Suppose X admits a metric d with Property S. We may assume by Lemma 2.3 that d is also strongly connected. Then the completion (\tilde{X}, \tilde{d}) of (X, d) is the desired Peano compactification. That (\tilde{X}, \tilde{d}) is connected and has Property S follows from the same properties for (X, d). And since a complete, totally bounded metric space is compact, (\tilde{X}, \tilde{d}) is a Peano compactification of (X, d).

Given a nonempty connected open subset U of \tilde{X} , we show that the nonempty set $U \cap X$ is connected, thereby verifying that $\tilde{X} \setminus X$ is locally non-separating in \tilde{X} . Suppose $U \cap X = H \cup K$ is a separation. Since U is open in \tilde{X} , $U \cap X$ is dense in U, and $U \subset \overline{H} \cup \overline{K}$ (the closures are taken in \tilde{X}). We must have $\overline{H} \cap \overline{K} \cap U \neq \emptyset$, otherwise $U = (\overline{H} \cap U) \cup (\overline{K} \cap U)$ is a separation. Let $p \in \overline{H} \cap \overline{K} \cap U$. Choose $\delta > 0$ such that the 3 δ -neighborhood of p lies in U, and choose points h and k of H and K, respectively, lying in the δ -neighborhood of p. Then $d(h, k) < 2\delta$, and since d is strongly connected there exists a connected subset M of X containing h and k, with diam $M < 2\delta$. Then M lies in the 3 δ -neighborhood of p, therefore in U. Thus $M \subset U \cap X$ is a connected set meeting both H and K, and $H \cup K$ cannot be a separation of $U \cap X$.

Conversely, suppose X has a Peano compactification \tilde{X} such that $\tilde{X} \setminus X$ is locally non-separating. Take any admissible metric \tilde{d} on \tilde{X} , and let d be its restriction to X. For every connected open cover $\{U_i\}$ of \tilde{X} , $\{U_i \cap X\}$ is a connected cover of X. Since (\tilde{X}, \tilde{d}) has finite connected open covers with arbitrarily small mesh, so does (X, d), and d has Property S.

D.W. Curtis

3. Hyperspaces which are homeomorphic to Q\point

LEMMA 3.1: Let X be a connected, locally connected metric space, with compact subsets A and B such that $A \subset int B$. Then only finitely many components of the complement $X \setminus A$ meet $X \setminus B$.

PROOF: Each component U of X\A must have a limit point in A, otherwise U is both open and closed in X. Thus if $U \setminus B \neq \emptyset$, we must have $U \cap bdB \neq \emptyset$. Suppose there exists an infinite sequence $\{U_i\}$ of distinct components of X\A, each extending beyond B. Choose $y_i \in U_i \cap bdB$ for each i. By compactness of bdB, we may assume that $y_i \rightarrow y \in bdB$. Since y has a connected neighborhood in X\A, the component of X\A containing y meets U_i for almost all i, contradicting our supposition that the U_i are distinct components.

LEMMA 3.2: Every connected, locally connected, locally compact metric space admits a metric with Property S.

PROOF: Let $\tilde{X} = X \cup \infty$ be the one-point compactification of such a space X. Then \tilde{X} is metrizable, since X is separable metric. We claim that for any admissible metric d on \tilde{X} , the restriction of d to X has Property S (and therefore \tilde{X} is a Peano continuum). Given $\epsilon > 0$, choose a compact subset $A \subset X$ such that the complement $X \setminus A$ lies in the ϵ -neighborhood of ∞ , and let $B \subset X$ be a compact neighborhood of A. Then by Lemma 3.1, only finitely many components of $X \setminus A$ extend beyond B. Thus a finite connected cover of B with mesh less than ϵ .

THEOREM 3.3: $2^{X} \approx Q$ \point if and only if X is a connected, locally connected, locally compact, noncompact metric space. Similarly, $C(X) \approx Q$ \point if and only if X satisfies the above conditions and contains no free arcs.

PROOF: Suppose X satisfies the stated conditions. By Lemma 3.2, X admits a metric with Property S, and by Proposition 2.4, X has a Peano compactification \tilde{X} with locally non-separating remainder. Since X is locally compact it must be open in its compactification \tilde{X} , and the remainder $\tilde{X} \setminus X$ is closed. By Proposition 2.1, the intersection hyperspace $2^{\hat{X}}(\hat{X} \setminus X)$ is a Z-set in $2^{\hat{X}}$. Thus $(2^{\hat{X}}, 2^{\hat{X}}(\hat{X} \setminus X))$ and $(Q \times [0, 1], Q \times \{0\})$ are homeomorphic as pairs, and $2^{x} = 2^{\hat{X}} \setminus 2^{\hat{X}}(\hat{X} \setminus X)$ is

homeomorphic to $Q \times (0, 1]$, which is homeomorphic to Q\point (since Cone $Q \approx Q$).

If in addition X contains no free arcs, then neither does \tilde{X} , and the hyperspaces $C(\tilde{X})$ and $C(\tilde{X}; \tilde{X} \setminus X)$ are copies of Q. By Proposition 2.2, $C(\tilde{X}; \tilde{X} \setminus X)$ is a Z-set in $C(\tilde{X})$, and it follows as above that $C(X) \approx Q$ point.

Conversely, if either 2^x or C(X) is homeomorphic to Q\point, X must be a connected, locally connected metric space by Theorem 1.6. Since X has a closed imbedding into both 2^x and C(X), X must be locally compact. Obviously, X is noncompact, and if $C(X) \approx Q$ \point, X contains no free arcs (otherwise C(X) contains an open 2-cell).

4. Hyperspaces which are homeomorphic to 1^2

With the Hilbert cube Q coordinatized as $\Pi_1^{\infty}[0, 1]$, let $s = \Pi_1^{\infty}(0, 1) \subset Q$. Anderson [1] showed that s is homeomorphic to the Hilbert space $1^2 = \{(x_i) \in \mathbb{R}^{\infty} : \sum_{i=1}^{\infty} x_i^2 < \infty\}$. Any subspace P of Q such that $(Q, P) \approx (Q, s)$ is called a *pseudo-interior* for Q, and its complement $Q \setminus P$ is a *pseudo-boundary*. A non-trivial example of a pseudo-boundary is the subset $\Sigma = \{(x_i) \in Q : 0 < \inf x_i \text{ and } \sup x_i < 1\}$. Kroonenberg [12] has given the following characterization for pseudo-boundaries, based on the original characterization by Anderson [2].

LEMMA 4.1: Let $\{K_i\}$ be an increasing sequence of subsets of Q such that:

- i) each $K_i \approx Q$,
- ii) each K_i is a Z-set in Q_i ,
- iii) each K_i is a Z-set in K_{i+1} ,
- iv) for each $\epsilon > 0$, there exists a map $f: Q \to K_i$ for some i such that $d(f, id) < \epsilon$.
- Then $\bigcup_{i=1}^{\infty} K_i$ is a pseudo-boundary for Q.

THEOREM 4.2: The following conditions are equivalent:

- 1) X has a Peano compactification \tilde{X} such that $(2^{\tilde{X}}, 2^{X}) \approx (Q, s)$,
- 2) X has a Peano compactification \tilde{X} such that $(C(\tilde{X}), C(X)) \approx (Q, s)$,
- 3) X is a topologically complete, separable, connected, locally connected, nowhere locally compact metric space which admits a metric with Property S.

D.W. Curtis

PROOF: Suppose X satisfies condition 3). Then by Proposition 2.4, X has a Peano compactification \tilde{X} with a locally non-separating remainder. Let \tilde{d} be a convex metric for \tilde{X} . Since X is topologically complete and nowhere locally compact, the remainder $\tilde{X} \setminus X$ must be a dense countable union $\bigcup_{i=1}^{\infty} F_i$ of closed, locally non-separating sets in \tilde{X} . We may assume that $F_i \subset F_{i+1}$ and F_i has empty interior in F_{i+1} , for each *i*. This can be arranged inductively as follows. Select a dense sequence $\{x_n\}$ in F_i , a sequence $\{y_n\}$ in $\tilde{X} \setminus F_i$ such that $\tilde{d}(x_n, y_n) < 1/n$ for each *n*, and a sequence $\{z_n\}$ in $(\tilde{X} \setminus X) \setminus F_i$ such that $\tilde{d}(y_n, z_n) < 1/n$ for each *n*. Then replace F_{i+1} by the compact set $F_i \cup F_{i+1} \cup \{z_n : n \ge 1\}$.

By Proposition 2.1, each intersection hyperspace $2^{\hat{X}}(F_i)$ is a Z-set copy of Q in $2^{\hat{X}}$, and each $2^{\hat{X}}(F_i) = 2^{\hat{X}}(F_i, F_{i+1})$ is a Z-set in $2^{\hat{X}}(F_{i+1})$. Given $\epsilon > 0$, we claim there exists a map $f: 2^{\hat{X}} \rightarrow 2^{\hat{X}}(F_i)$ for some *i*, such that $\rho(f, id) \leq \epsilon$. For $D \in 2^{\hat{X}}$, define f(D) to be the closed ϵ -neighborhood of D in \hat{X} (with respect to the convex metric \tilde{d}). Suppose $f(2^{\hat{X}}) \setminus 2^{\hat{X}}(F_i) \neq \emptyset$ for each *i*. Then there exists a convergent sequence $y_i \rightarrow y$ in \hat{X} such that the ϵ -neighborhood of y_i is disjoint from F_i , for each *i*. It follows that the ϵ -neighborhood of *y* is disjoint from $\bigcup_{i=1}^{\infty} F_i = \hat{X} \setminus X$, contrary to the fact that $\hat{X} \setminus X$ is dense in \hat{X} . Thus by Lemma 4.1, $\bigcup_{i=1}^{\infty} 2^{\hat{X}}(F_i) = 2^{\hat{X}} \setminus 2^X$ is a pseudo-boundary for $2^{\hat{X}}$, and $(2^{\hat{X}}, 2^X) \approx (Q, s)$.

The proof that $(C(\tilde{X}), C(X)) \approx (Q, s)$ is virtually the same as above, using Proposition 2.2.

Conversely, suppose either condition 1) or 2) is satisfied. Since s is a topologically complete, separable, nowhere locally compact metric AR, X must be a topologically complete, separable, connected, locally connected, nowhere locally compact metric space. We show that the remainder $\tilde{X} \setminus X$ is locally non-separating in \tilde{X} . For every connected open subset U of \tilde{X} , the hyperspace 2^U is a connected open subset of $2^{\tilde{X}}$. Since the pseudo-boundary $Q \setminus s$ is locally nonseparating in $Q, 2^{\tilde{X}} \setminus 2^X$ is locally non-separating in $2^{\tilde{X}}$. Thus $2^U \cap 2^X =$ $2^{U \cap X}$ is connected, and $U \cap X$ is connected. It follows from Proposition 2.4 that X admits a metric with Property S.

The first result of this type, $(2^Q, 2^s) \approx (C(Q), C(s)) \approx (Q, s)$, was obtained by Kroonenberg [12].

Using the very powerful Hilbert space characterization theorem of Torunczyk [14], the author has recently shown that $2^X \approx C(X) \approx 1^2$ for every topologically complete, separable, connected, locally connected, nowhere locally compact metric space X [5]. The following example illustrates the difference between this result and Theorem 4.2.

EXAMPLE 4.3: There exists a space X such that $2^X \approx C(X) \approx 1^2$, but X does not admit a metric with Property S.

PROOF: The space X is a countable union of copies of 1^2 meeting at a single point θ , and given the uniform topology at θ . X may be realized in 1^2 as follows. Let $N = \bigcup_{i=1}^{\infty} \alpha_i$ be a partition of the positive integers, with each α_i infinite, and for each i set $1_i^2 = \{(x_n) \in 1^2 : x_n = 0$ if $n \notin \alpha_i\}$. Then $X = \bigcup_{i=1}^{\infty} 1_i^2 \subset 1^2$. Clearly, X is a closed, connected, locally connected, nowhere locally compact subset of 1^2 , thus $2^X \approx C(X) \approx 1^2$.

The argument that the space X does not admit a metric with Property S is easy. Consider any admissible metric d for X. For some $\delta > 0$, the δ -neighborhood (with respect to d) of θ in X must be contained in the neighborhood $\{x \in X : ||x|| < 1\}$ of θ . Now consider any connected cover of X with mesh less than δ . For each *i*, any element of the cover intersecting $\{x \in 1_i^2 : ||x|| \ge 1\}$ cannot contain θ , and must therefore lie in $1_i^2 \setminus \theta$. Hence the cover is infinite, and d does not have Property S.

REFERENCES

- R.D. ANDERSON: Hilbert space is homeomorphic to the countable infinite product of lines. Bull. Amer. Math. Soc. 72 (1966) 515-519.
- [2] R.D. ANDERSON: On sigma-compact subsets of infinite-dimensional spaces, (unpublished manuscript).
- [3] C.R. BORGES: Notices Amer. Math. Soc. 22 (1975) 75T-G118 and 23 (1976), 731-54-10.
- [4] D.W. CURTIS: Growth hyperspaces of Peano continua. Trans. Amer. Math. Soc. 238 (1978) 271-283.
- [5] D.W. CURTIS: Hyperspaces homeomorphic to Hilbert space. Proc. Amer. Math. Soc. 75 (1979) 126–130.
- [6] D.W. CURTIS and R.M. SCHORI: 2^x and C(X) are homeomorphic to the Hilbert cube. Bull. Amer. Math. Soc. 80 (1974) 927–931.
- [7] D.W. CURTIS and R.M. SCHORI: Hyperspaces which characterize simple homotopy type. Gen. Top. and its Applications 6 (1976) 153-165.
- [8] D.W. CURTIS and R.M. SCHORI: Hyperspaces of Peano continua are Hilbert cubes. Fund. Math. 101 (1978) 19–38.
- [9] J. DUGUNDJI: Absolute neighborhood retracts and local connectedness in arbitrary metric spaces. Comp. Math. 13 (1958) 229-246.
- [10] J.G. HOCKING and G.S. YOUNG: Topology. Addison-Wesley, 1961, Reading, Mass.
- [11] J.L. KELLEY: Hyperspaces of a continuum. Trans. Amer. Math. Soc. 52 (1942) 22-36.
- [12] N. KROONENBERG: Pseudo-interiors of hyperspaces. Comp. Math. 32 (1976) 113-131.
- [13] U. TASMETOV: On the connectedness of hyperspaces Soviet Math. Dokl. 15 (1974) 502-504.

- [14] H. TORUNCZYK: Characterizing Hilbert space topology (preprint).
- [15] M. WOJDYSLAWSKI: Retractes absolus et hyperespaces des continus. Fund. Math. 32 (1939) 184–192.

(Oblatum 11-I-1977 & 12-XII-1978)

Louisiana State University Baton Rouge, Louisiana 70803

Added in proof

The condition iv) of the pseudo-boundary characterization Lemma 4.1 is insufficient, and should be replaced by the following condition iv)*: there exists a deformation $h: Q \times [0, 1] \rightarrow Q$, with h(q, 0) = q for each $q \in Q$, such that for each $\epsilon > 0$, $h(Q \times [\epsilon, 1]) \subset K_i$ for some *i*. In the application of Lemma 4.1 contained in the proof of Theorem 4.2, this stronger condition is easily verified (the map f of $2^{\tilde{X}}$ is replaced by the deformation $h: 2^{\tilde{X}} \times [0, 1] \rightarrow 2^{\tilde{X}}$, where h(D, t) is the closed *t*-neighborhood of D in \tilde{X}).

152