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Introduction

If x is a Cohen-Macaulay point of a d-dimensional affine variety V,
then the embedding dimension of V at x is bounded above by
ex + d - 1, where ex is the multiplicity of V at x, [ 1]. In this paper the

following result is proved.

THEOREM: If x is a Gorenstein point of an affine variety V, the

tangent cone at x is Gorenstein if the embedding dimension of V at x is
d, d + 1, ex + d - 2 or ex + d - 1. Also, for any d &#x3E; 0, there is an affine
variety V with Gorenstein point x such that the embedding dimension
of V at x is d + 2 = eX + d - 3 and the tangent cone at x is not

Gorenstein.

An immediate application of this result is that the Hilbert function
of a Gorenstein singularity x, in the case where the embedding
dimension at x is ex + d - 2 with d &#x3E;_ 1, is a polynomial for n  2 and is

completely determined by the multiplicity at x. In fact,

Other applications will be presented in a subsequent paper.
The author proved in [12] an analogous result for Cohen-Macaulay

points. Namely that if x is a Cohen-Macaulay point then the tangent
cone at x is Cohen-Macaulay if the embedding dimension at x is d,
d + 1 or ex + d - 1. D. Eisenbud and J. Wahl informed the author of

the application of [12] to rational surface singularities which have, by
a result of M. Artin, [2], embedding dimension ex + 1. In [14], Wahl
proves directly that the tangent cone at a rational surface singularity
* The author was partially supported by the National Science Foundation.
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is Cohen-Macaulay. He also proves that the minimally elliptic surface
singularities of Laufer [7] have Gorenstein tangent cones. This is a

special case of the result to be proved in this paper as minimally
elliptic singularities are Gorenstein surface singularities x with

embedding dimension ex. The result answers a question posed to the
author by D. Eisenbud.

1. Some preliminaries

The techniques which we will use are purely algebraic so we

rephrase the problem in terms of local rings and associated graded
rings. Henceforth, (R, m) is a local ring of dimension d &#x3E; 0. (The term
"local" includes "Noetherian.") G(R) = R/m®m/m2®m2/m3®... is
the associated graded ring with maximal homogeneous ideal Jae =

m/m 2® m 2/m 3®.... We denote the map R ---&#x3E; G(R) which takes each
element x of R to its initial form in G(R) by "-", i.e., x -x in
mr/mr+l, where x E m’Bm’+I, some t - 0. VR = dimRlmm/m2 is the

embedding dimension of R. If 7 is an m-primary ideal of (R, m), e(l) 
B

will denote the multiplicity of 7. e(m) is the multiplicity of R and will
be denoted by eR.
We will need some facts about reductions of ideals, cf. [11]. A

minimal reduction for m is a sequence xl, ..., xd of elements of m

such that M"’ = (XI, ..., xd)m’, for some non-negative integer r.

Viewed in G(R), a minimal reduction for m is just a sequence
XI, ..., Xd of elements of m with initial forms XI,..., xd forming a
system of homogeneous parameters of degree 1 for G(R), i.e.,
x,, ..., Xd are elements of mlm2 and -l«"" C (XI,..., xd)G(R), for some
non-negative integer r. From this point of view, it is well known that,
if R/m is infinite - a hypothesis which will never cause us any prob-
lem, then there is a system X,, ..., xd of homogeneous parameters of
degree 1 for G(R) ; in other words, if R/m is infinite, minimal

reductions for m exist, cf. [11]. The integer r that appears above is
important, so we make the following definition.

1.1. DEFINITION: Assume that R/m is infinite. The reduction

exponent r(R) of R is the least integer r such that there is a system of
parameters xi,..., xd of R with M"I = (x,, ..., Xd)M"-

It is not hard to see that if x,, ..., xd is a minimal reduction for m,
then e«xI,..., xd)R) = eR. Thus, if (R, m ) is a Cohen-Macaulay ring
and XI, ..., Xd is a minimal reduction for m, then eR =
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À(RI(xI, ..., xd)R), where À = ÀA denotes the length of an A-module
over an Artinian local ring A.

It is proved in [ 11 that if x,, ... , xd is a minimal reduction for m,
then the elements x,, ..., xi are analytically independent in m. This
means that if f ( Y,, ..., Yd ) is any form of (arbitrary) degree s with
coefficients in R such that f (x 1, xd) Ems + l, then all the coefficients
of f are in m.
The proof of the result stated in the introduction has two steps.

First, we show that for any Cohen-Macaulay local ring (R, m), G(R)
is Cohen-Macaulay if r(R):5 2. Then we show that the given hypo-
theses on (R, m) force r(R) = 2.

2. The réduction exponent

The following theorem generalizes Theorem 2 in [12].

2.1. THEOREM: Let (R, m) be a d-dimensional Cohen-Macaulay
local ring with R/m infinite. If r(R) - 2, then G(R) is Cohen-

Macaulay.

PROOF: By hypothesis, there is a regular sequence xl, ..., xd in R
with m3 = (X., ..., Xd )m2. By [4] or [9], it is sufficient to prove that

X,, ..., xd is a regular sequence in G(R). We do this by induction on d.
There is no problem if d = 0, so we let d = 1. Suppose yx, E mt, with
t &#x3E; 3. Then yxl e xlm’-’ and, since xi is a nonzero divisor in R,
y E mt-le This shows that xi is a nonzero divisor in G(R).
Assume that d &#x3E; 1. We first check that xi is a nonzero divisor in

G(R). Suppose yx, e m’ with t &#x3E; 3. Then YXI E (Xl, ..., xd)‘-2m2. We
have yxi = XIg(X., ..., xd) + h (X2, ..., xd), where g is a homogeneous
polynomial of degree t - 3 in xi, ..., Xd with coefficients in M2 and h is
a homogeneous polynomial of degree t - 2 in x2, ..., xd with

coefficients in m2. Thus, (y - g)x 1 = h. Since the associated graded
ring of R with respect to the ideal xR = (x,, ..., xd )R, namely the ring
RlxRq)xRI(xR)2(D(XR)21(xR)’ED..., is a polynomial ring over RlxR, it
follows that y - g E (x,, ..., Xdr-2R.. (Actually, by [5], y - g E

(x2, ..., Xd )t-2 R.) Thus y = g +,e, where e is a homogeneous poly-
nomial of degree t - 2 in xi, ..., xd. But yxi = gxi + éxi is in m ‘ and,
since gxl E m’, it follows that txi E mt. By the analytic independence
in m of Xl,..., xd, all the coefficients of e are in m. Hence y E m’-’.
Thus the image of x 1 in G(R) is a nonzero divisor in G (R ) and
G(Rlx,R)=--G(R)15c",G(R). R/x1R is a (d -1)-dimensional Cohen-
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Macaulay local ring which satisfies the hypotheses of the theorem, so
the theorem follows by induction.

2.2. EXAMPLE: If (R, m ) is Cohen-Macaulay and r(R ) = 3, then

G(R) need not be Cohen-Macaulay. Let R = k [[t4@ t’, t "Il, k any
(infinite) field and t an indeterminate. Then m4 = t4m3, where m =

(t4, t5, t u)R. R = k[[X, Y, Z]]/(XZ - Y’, YZ - X4, Z2 - X3y2) and

G(R) == k[X, Y, Z]/(XZ, YZ, Z2, Y4). G(R) is not Cohen-Macaulay.
With regard to this example and similar ones, it is interesting to

recall, cf. [10], that if (R, m ) is any 1-dimensional complete local
domain with eR &#x3E; 1, then G(R) has nonzero prime nilradical.

However, the analysis in [10] does not give information about

whether JK belongs to zero in G(R).

3. Gorenstein local rings

If (R, m ) is any d-dimensional local Cohen-Macaulay ring, then, by
[1], VR :$ eR + d - 1. If vR = d or d + 1, it is well-known that G (R ) is
Cohen-Macaulay. In [12], it is proved that for vR = eR + d - 1, it is

also true that G(R) is Cohen-Macaulay. In fact, it is proved that
VR = eR + d - 1 implies that r(R) = 1. The following proposition shows
that vR = eR + d - 1 is not an interesting case if R is Gorenstein.

3.1. PROPOSITION: Let (R, m) be a d-dimensional local Cohen-

Macaulay ring of embedding dimension eR + d -1, with eR &#x3E; 1. Then,

PROOF: We may assume that Rlm is infinite. By [12], vR =

eR + d -1 implies that there is a regular sequence x = x 1, ..., xd in R
with m 2 = xm. Let R * = R/xR and m* = mlxR. Then m * _ (o : m *) _
f a E R * am * = O}. But ExtR(R/m, R) = HomR(R/m, R/xR) = (0 : m *).
Now, ÀR*(R*)=eR. Hence, dimwm Ext i(R/m, R) = dim wm(0 : m *) =
dimR*lm* m* = eR-l.

3.2. COROLLARY: If (R, m) is a Gorenstein local ring of embedding
dimension eR + d - 1 with eR &#x3E; 1, then eR = 2.

PROOF: R Gorenstein implies that dimRlm Ext i(R/m, R ) = 1.
We turn to Cohen-Macaulay rings of embedding dimension eR +

d - 2. Unlike the case of embedding dimension eR + d - 1, there do
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exist Gorenstein local rings of embedding dimension eR + d - 2 with eR
any positive integer &#x3E;2. For example, let e be any positive integer &#x3E;2

and set R = k [[t e, t e+l’ .. -’ t2e-2]], where k is a field. R is a 1-dimen-

sional complete local domain with vR = e - 1 and eR = e so vR =

eR + d - 2. The numerical semigroup S generated by e, e + 1,..., 2e -
2 is symmetric because the conductor of S is 2e and the number of
elements in S which are less than 2e is e. It follows from [6] that R is
Gorenstein. Let d &#x3E; 1. Then T == R [[XI, ..., Xd-l]] is a Gorenstein

local ring of dimension d. eT = eR = e and vT = eT + d - 2.

3.3. PROPOSITION: Let (R, m) be a d-dimensional local Cohen-

Macaulay ring. Let x = XI, ..., xd be a minimal reduction for m. Then
ÀR/xR(m 2/xm) = 1 and m 3 C xm if and only if VR = eR + d - 2.

PROOF: We have the exact sequence

from which it follows that ÀRlxR(m/xm) = eR + d - 1. Since

is exact, ÀR/xR(m2/xm) = 1 if and only if VR = eR + d - 2. We have

m 2 d (m 3, XM) ::) xm. If VR = eR + d - 2, then m 2 7 xm, so m 3 C xm.
In general, vR = eR + d - 2 does not imply that MI = xm 2, as Exam-

ple 2.2 shows. However, we will now see that if (R, m ) is Gorenstein
of embedding dimension vR = eR + d - 2, then MI = xm 2. In the proof
of (3.4) below, we will use the fact that if (R, m ) is a 0-dimensional
local Gorenstein ring and 1 is an ideal, then R (R/I ) _ R ((o : I )), cf., for
example [3].

3.4. THEOREM: Let (R, m) be a d-dimensional local Gorenstein ring
with embedding dimension VR = eR + d - 2. Then G(R) is Gorenstein.

The following lemma will be needed for the proof of (3.4).

3.5. LEMMA: Let k be any field and V a n-dimensional vector space
over k. Let ( , ) be a symmetric bilinear form on V. There is a basis
v l, ..., vn for V such that for each i, lï, either (Vi, Vi) = 0 or

(vi, Vj) = 0 for j 7é i.

PROOF: Let v,, ..., vn be a basis for V. If (v;, vi) = 0 for all i, the
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proof is finished, so we assume that (vl, vl) gé 0. Let Vi=
f x E V I (x, v i) = 01. dim V,  dim V so there is, by induction, a basis
w,, ..., w for VI with the required properties. In addition we have
(v 1, wj) = (wb v 1) = 0 for 1:5 j - t. To see that v 1, wi, ..., wt span V,
note that if x E V, then x’ = x - [(x, v i)1(v i , v,)]v, 1 e VI.

PROOF oF (3.4): We may assume that R/m is infinite and let

x = xi,..., xd be a minimal reduction for m. By (3.3), m3 C xm and
ÀR/xR(m2/xm) = 1. We will first prove that G (R ) is Cohen-Macaulay.
For this it is sufficient, by (2.1 ), to show that M3 = xm 2. We prove this
by induction on d. Since d = 0 is no problem, we begin with d = 1. Let
x = xi. We may assume that vR &#x3E; 2. For if vR = 2 then, since

ÀR/m(m2/m3) &#x3E; 2, we have ÀR/m(m2/m3) = 3 and m 3 = xm 2.
The first step is to show that m4 C x2m. Since m3 C xm and

ÀR/xR(m2/xm) = 1, it is sufficient to show that there is some element in
m 2BXM whose square is in x2m. Pass to the 0-dimensional Gorenstein
ring R = R/xR with m = m/xR and let k = R/m. Let V = mlm2. V is à
k-vector space of dimension eR - 2 &#x3E; 1. V has a non-degenerate
symmetric bilinear form given by multiplication in R. For m2 =

(xm, g), where g is any element of m 2xm. m 2 = gR and we define for
a, 13 E m/ m 2, (a, (3) = ù«o; where for a E 1ÎÍ mapping to a and b E m
mapping to 38, ab = u«/ and ù,,,g is the image of u,,,o in k. fil3 = 0, so
this is well defined. Since R is Gorenstein, this form is also non-

degenerate. By (3.5), we can find a minimal basis x, z,, ..., ZeR_2 for m
with the property that, for 1-2, either z2 E xm or zZj E xm
for j é i. If there is an i with z 2 xm, then zi E x2m. For if j # i, there
is an t 76 i, such that zjztE xm. Thus, z 2 = uzjze + xju with u E R Bm and
IL E m. Then, zi = uz;zez2 + XJLZr E x2m. If zr E xm for all i, then there
is a j:,;é 1 such that zlzje xm. Then (ZlZj)2 = Z1ZJ E x2m.
Thus we have that m4 C x2m. Now we pass to the 0-dimensional

Gorenstein ring R * = R/x2R with m * = m/x2R. We have ÀR*(R*) = 2eR,
,kR*(M */M*’) = eR - 1 and ÀR*(m*3) = 1. Thus, R*(m *2/m *3) _
2eR - eR - 1 = eR - 1. Consequently, ÀR/m(m2/m3) = eR and, since eR =
3ÀR/xR(R/xR) = ÀR/xR(m2/xm2), it f ollows that m 3 = xm 2. This concludes
the case d = 1.

Assume that d &#x3E; 1. Suppose that m3 g xm2. We will show that there
is an i, 1  i  d, such that (mlxiR)3 _É (XI ..., zi, ..., xd)(mlxR)2. Since
R/xiR is a local Gorenstein ring of dimension d - 1 and embedding
dimension vRIxR = eRIxR + (d - 1) - 2, for eR/xR = eR, this will contradict
the induction hypothesis.’ Since m 3xm 2, there is an element z in M3 3

’ The author is grateful to B. Singh for his simplification of this part of the proof and
for several incisive comments on the paper.
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with Ze xm 2. Write z = ax + bx2 + ’ .. + cxd with a, b,..., c E m. By
the analytic independence of x in m we have x2R n m3 = X2M C xm 2.
Therefore, Ze xm2 + x2R. Now, if a, b,..., c E m2 + xR then z E

xm2 + x2R, a contradiction. We may therefore assume that alÉ M2+
xR. We then claim that any i &#x3E; 2 meets the requirement. To see this,
say for i = d, suppose z E (X., ..., Xd-t)m2 + xdR. Then there exists

y E m 2 such that (a - y )x, E (x2, ..., xd)R. Therefore a - y E

(x2, ..., xd)R, which shows that a E m2 + xR, a contradiction. This

completes the proof that m 3 = xm 2.
It remains to show that G(R) is Gorenstein. XI, ..., xd is a regular

sequence in G(R) and G(RlxR) = G(R)/(xl, ..., gd)G(R). Since G(R)
is Gorenstein if and only if G(R»)l is Gorenstein, [8], it suffices to

show that G(RlxR) is Gorenstein. Let Ro = RlxR and mo = mlxR.
Then G(Ro) = Ro/moEBmo/mÕEBmÕ and JUo = mo/mÕEBmÕ. We must
show that dimR/m (0: JUo) = 1. But (mo/mÕ) = 0 means ymo C M3 = 0.
Hence (0: JUo) = m Õ. Since Ro is Gorenstein, dimR/m (m Õ) =
dimR/m(O: mo) = 1. This concludes the proof of the theorem.

(3.6) EXAMPLE: We show that for any d &#x3E;- 0 there is a local

Gorenstein ring (R, m) of embedding dimension vR = d + 2 =
eR + d - 3 with G(R) not Gorenstein. We begin with d = 1. Let k be a
field and t an indeterminate. Let R = k[[t’, t6, t9]]. The numerical
semigroup generated by 5, 6 and 9 is symmetric so, by [6], R is a

1-dimensional local Gorenstein ring. R = k [[X, Y, Z]]I ( YZ - x3,
Z2 - y3) and G(R) = k[X, Y, Z]/( YZ, Z2, Y4 - ZX 3). 3 = vR =
eR + d - 3 = d + 2 and G(R) is not Gorenstein. RI t5 R is a similar

example for d = 0. Examples for d &#x3E; 1 are obtained by adjoining
analytic indeterminates Wl, ..., Wd-l to k[[t5, t6, t9]].

In summary, then, we have the following. If (R, m ) is a d-dimen-
sional Gorenstein local ring of multiplicity eR and embedding dimen-
sion VR, then G (R ) is Gorenstein if VR = d, d + 1 or eR + d - 2. These
are the only embedding dimensions which will always give G(R)
Gorenstein.

3.7. COROLLARY: Let (R, m) be a local Gorenstein ring of multi-
plicity at most 4. Then G(R) is Gorenstein.

It follows from (3.4) that the Hilbert function for a d-dimensional
local Gorenstein ring of embedding dimension eR + d - 2 is completely
determined by eR. To see this, we recall that the Hilbert sum trans-
forms for any local ring (R, m ) are defined inductively as follows. Let
n be any non-negative integer.
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and

3.8. REMARK: Let (R, 3m ) be a d-dimensional local ring. It is known,
cf. [13], that if XI, ..., Xt are elements of m/m2 with images Xl,..., Xt
in G(R) forming a regular sequence, then

for all n * 0. Thus, if G (R ) is Cohen-Macaulay, there is an Artin local
ring R * of embedding dimension vR - d and length eR such that

for all n &#x3E; 0. (If R/m is infinite, take R * = R/(x,, ..., xd )R, where
x), ..., Xd is a minimal reduction for m. If R/m is finite, it may be

necessary first to pass to the ring R (u) = R [u ]mR[uJ, where u is an

indeterminate.)

3.9. COROLLARY: Let (R, m) be a d-dimensional local Gorenstein
ring of embedding dimension eR + d - 2. Then there exists a 0-dimen-
sional local Gorenstein ring (R*, m*) with HQ*(1) = eR - 2, H&#x26;*(2) = 1
and HR*(n) = 0, for n &#x3E; 2, such that

for all n * 0. In fact, for d - 1,

PROOF: We may assume that R/m is infinite. In the first part of the

proof of (3.4) we saw that (R, m) Gorenstein with vR = eR + d - 2
implies that there is a regular sequence x,, ..., xd in R such that

m3 = (x,, ..., xd)m2 and the images 3xi, ..., Xd form a regular sequence
in G(R). With R* = RI(xi, ..., xd)R, the first statement of the corol-
lary follows from (3.8). The second statement follows from the first
by double induction on n and d, using the fact that for any local ring
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