Compositio Mathematica

Robert Kaufman

Jang-Mei Wu

Singularity of parabolic measures

Compositio Mathematica, tome 40, no 2 (1980), p. 243-250
http://www.numdam.org/item?id=CM_1980__40_2_243_0
© Foundation Compositio Mathematica, 1980, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SINGULARITY OF PARABOLIC MEASURES*

Robert Kaufman and Jang-Mei Wu

Abstract

We show by example that a recent result of Dahlberg on harmonic measure for the Laplace equation can not be extended to parabolic measure for heat equation. The example is based on the non-selfadjointness of the heat operator; the methods are estimations of Green's function and construction of special boundary curves.

Let $f(t)$ be a continuous function on $(-\infty, \infty)$ and $\Omega \subseteq R^{2}$ be the region $\{(x, t): x>f(t)\}$. Let m be the measure on $\partial \Omega$ defined by $m(E)=$ the Lebesgue measure of $\{t:(f(t), t) \in E\}$. If Ω is Dirichlet regular for the heat equation (or adjoint heat equation), for a fixed point $(y, s) \in \Omega$, the parabolic measure (or adjoint parabolic measure) of a Borel set $E \subseteq \partial \Omega$ at (y, s), denoted by $w^{(y, s)}(E)$ (or $w^{*(y, s)}(E)$), is defined to be the value at (y, s) of the solution of the heat equation (or adjoint heat equation) on Ω with boundary value 1 on E and 0 on $\partial \Omega \backslash E$ in the Brelot-Peron-Wiener sense.

In case $f(t) \equiv 0$, and $\Omega=\{x>0\}$ it is known that $m, w^{\left(x_{0}, t_{0}\right)}, w^{*\left(x_{0}, s_{0}\right)}$ are mutually absolutely continuous on $\left\{(0, t)\right.$: $\left.s_{0} \leq t \leq t_{0}\right\}$.

Let $\lambda^{(y, s)}$ be the harmonic measure on $\partial \Omega$ at (y, s) corresponding to the Laplace equation $\partial^{2} / \partial x^{2}+\partial^{2} / \partial t^{2}=0$. It is known by conformal mapping that

Theorem A: If f is Lip 1, then $\lambda^{(y, s)}$ and m are mutually absolutely continuous on $\partial \Omega$.

In fact, Dahlberg [1] has proved Theorem A for $x \in R^{n}, n \geq 2$. The proof depends explicitly on the self-adjointness of the Laplace equation. Domains with Lip 1 boundaries are the most general regions on which the boundary behavior of harmonic functions has been extensively studied.

[^0]Because the affine transformations $\left\{x \rightarrow a x+b, t \rightarrow a^{2} t+c\right\}$ are the only diffeomorphisms that preserve solutions of heat equation [2], regions with Lip $\frac{1}{2}$ boundaries are very natural for studying solutions of heat equation. In [5], Petrowski proved that if $f(t)$ is $\operatorname{Lip} \frac{1}{2}$ then every point on $\partial \Omega$ is a regular point for heat equation.

Richard A. Hunt proposed the problem whether m, w and w^{*} are mutually absolutely continuous on $\partial \Omega$ if $f(t)$ is $\operatorname{Lip} \frac{1}{2}$. In [6], the first author proved the following

Theorem B: Suppose that $f(t)$ is $\operatorname{Lip} \frac{1}{2}$ and E is a set on $\partial \Omega$ with m measure zero, then E is composed of two parts, one with $w^{(y, s)}$ measure zero, the other with $w^{*(y, s)}$ measure zero for each $(y, s) \in \Omega$.

In this note, we show by example that m, w and w^{*} can be mutually singular on $\partial \Omega$, for certain Lip $\frac{1}{2}$ function $f(t)$.

1. Lemmas on parabolic functions

We call solutions of heat equation parabolic functions.
For fixed $(y, s) \in R^{2}$, we denote by $W(x, t ; y, s)$ the fundamental solution of heat equation defined by

$$
\begin{array}{cl}
W(x, t ; y, s)=[4 \pi(t-s)]^{-1 / 2} \exp \left[-\frac{|x-y|^{2}}{4(t-s)}\right] & \text { for } t>s \\
0 & \text { for } t \leq s
\end{array}
$$

Suppose Ω is Dirichlet regular for heat equation, we say g is the Green's function for Ω, if for each fixed $(y, s) \in \Omega, W(x, t ; y, s)$ $g(x, t ; y, s)$ is the bounded parabolic function in Ω with boundary value $W(x, t ; y, s)$ for $(x, t) \in \partial \Omega$.

Lemma 1: Suppose $D=\{(x, t): x>2 \sqrt{|t|}\},(X,-T)$ is a point in D with $T>0$ and $g(x, t)$ is the Green's function on D with pole at $(X,-T)$. Then there are constants c and C depending on $(X,-T)$ so that $g(x, 0) \leq C x^{2}$ for $0<x<c$.

Proof: Let $b=X-2 \sqrt{T}$ and $S=\{(x, t) ; x=X-b / 2$ and $-T \leq$ $t \leq 0\}$. Let $C_{1}=\sup \{g(x, t):(x, t) \in S\}$ and

$$
C_{2}=\inf \left\{\frac{1}{\sqrt{8 \pi T}}-W(x, t ; 0,-2 T):(x, t) \in S\right\}
$$

The level curve γ defined by $W(x, t ; 0,-2 T)=1 / \sqrt{8 \pi T}$ satisfies the equation:

$$
\frac{1}{\sqrt{4 \pi(t+2 T)}} \mathrm{e}^{-\left(x^{2} / 4(t+2 T)\right)}=\frac{1}{\sqrt{8 \pi T}}
$$

or

$$
x^{2}=-2(t+2 T) \log \left(1+\frac{t}{2 T}\right)
$$

If $(x, t) \in \gamma$ and $-T \leq t<0$ then $x^{2}<-4 t$. Therefore if $(x, t) \in D$ and $t \geq-T$, then $(1 / \sqrt{8 \pi T})-W(x, t ; 0,-2 T) \geq 0$. Let V be the region $D \cap\{(x, t): t>-T\} \cap\{x<X-b / 2\}$. We observe by the definitions of C_{1} and C_{2} that

$$
C_{2} g(x, t) \leq C_{1}\left(\frac{1}{\sqrt{8 \pi T}}-W(x, t ; 0,-2 T)\right)
$$

for $(x, t) \in S$. When (x, t) is on the part of ∂V with $t=-T$ or on the part of ∂V with $x=2 \sqrt{|t|}$, the above inequality also holds because the left side is zero and the right side is positive. In view of the maximum principle for the solutions of heat equations [3, Chap. 2], we obtain

$$
\begin{aligned}
g(x, 0) & \leq \frac{C_{1}}{C_{2}}\left[\frac{1}{\sqrt{8 \pi T}}-W(x, 0 ; 0,-2 T)\right] \\
& =\frac{C_{1}}{C_{2}} \frac{1}{\sqrt{8 \pi T}}\left(1-\mathrm{e}^{-x^{2} / 8 T}\right) \\
& \leq C x^{2}
\end{aligned}
$$

for $(x, t) \in S$. When (x, t) is on the part of ∂V with $t=-T$ or on the part of ∂V with $x=2 \sqrt{|t|}$, the above inequality also holds because the

Suppose f is Lip $\frac{1}{2}$ satisfying $|f(t)-f(\tau)| \leq M|t-\tau|^{1 / 2}$. For $a>0$ we denote by $\Delta(t, a)=\{(f(s), s):|s-t| \leq a\}$ and $A(t, a)=(f(t)+10 M \sqrt{a}$, $t+2 a)$. Under these assumptions, we may reformulate Lemma 1.4 in [4] and Lemma 2.2 in [6] as follows.

Lemma 2: There exist positive constants C, c depending on M only, so that

$$
w^{(y, s)}(\Delta(t, r)) \leq C w^{(y, s)}(\Delta(t, a)) w^{A(t, a)}(\Delta(t, r))
$$

whenever $0<r<a / 2,(y, s) \in \Omega$ and $|y-f(t)|^{2}+|s-t|>c a$.

Lemma 3: Let $\left(x_{0}, t_{0}\right),\left(y_{0}, s_{0}\right)$ be two fixed points in Ω with $t_{0}>s_{0}>$ $a>0$, and g be the Green's function on Ω. Then there are positive constants C, μ, ρ depending on $a, M,\left(x_{0}, t_{0}\right)$ and $\left(y_{0}, s_{0}\right)$ so that

$$
w^{\left(y_{0}, s_{0}\right)}(\Delta(t, r)) \leq C r^{1 / 2} g\left(x_{0}, t_{0} ; f(t)+\mu \sqrt{r}, t\right)
$$

whenever $-a<t<a$ and $0<r<\rho$.

2. A test for singular measures

Suppose that μ is a positive Borel measure on $[0,1]$, and that μ is not totally singular to Lebesgue measure m; then $\mathrm{d} \mu / \mathrm{d} x \geq c>0$ on some set E of measure $m(E)>0$. Thus

$$
\begin{aligned}
\lim \mu([x, x+h]) h^{-1} & =\mu^{\prime}(x) \text { and } \\
\quad \lim \mu([x-h, x])^{-1} & =\mu^{\prime}(x)
\end{aligned}
$$

as $h \rightarrow 0^{+}$, when $x \in E$. Letting $h=1, \frac{1}{2}, \frac{1}{3}, \ldots$ we can apply Egoroff's theorem to find a set $E_{0} \subseteq E$, with $m\left(E_{0}\right)>0$, and a sequence $\epsilon_{n}>0$ decreasing to 0 , so that

$$
\begin{gathered}
\left|\mu([x, x+h])-h \mu^{\prime}(x)\right| \leq \epsilon_{n} h, \text { and } \\
\left|\mu([x-h, x])-h \mu^{\prime}(x)\right| \leq \epsilon_{n} h,
\end{gathered}
$$

when $(n+1)^{-1} \leq h \leq n^{-1}$, and $x \in E_{0}$. Let now $r(u)$ be a polygonal function on (0,1], defined by the conditions $r\left(n^{-1}\right)=\epsilon_{n-1}$ for $n \geq 2$ and r is constant on $\left[\frac{1}{2}, 1\right]$. Then

$$
\left|\mu([a, b])-(b-a) \mu^{\prime}(x)\right| \leq(b-a) r(b-a)
$$

whenever $0 \leq a<x<b \leq 1$ and $x \in E_{0}$.
Let $0<\delta<\frac{1}{4}$ and observe that by the Lebesgue density theorem, E_{0} must meet one of the sets $\left[\left(k+\frac{5}{8}\right) N^{-1},\left(k+\frac{3}{4}\right) N^{-1}\right](1 \leq k \leq N-2)$ whenever N is sufficiently large. We apply the inequality on μ measures to intervals [a, b_{1}], [a, b_{2}], [a, b_{3}] with

$$
\begin{gathered}
a=\left(k+\frac{1}{2}\right) N^{-1}, \quad b_{1}=(k+1-\delta) N^{-1}, \quad b_{2}=(k+1+\delta) N^{-1}, \\
b_{3}=\left(k+1+\frac{1}{2}\right) N^{-1} .
\end{gathered}
$$

We write these inequalities as

$$
E_{i}:\left|\mu\left(\left[a, b_{i}\right]\right)-\left(b_{i}-a\right) \mu^{\prime}(x)\right| \leq N^{-1} r\left(N^{-1}\right), \quad i=1,2,3 .
$$

Combination of E_{1} and E_{2} gives

$$
\left|\mu\left(\left(b_{1}, b_{2}\right]\right)-\left(b_{2}-b_{1}\right) \mu^{\prime}(x)\right| \leq 2 N^{-1} r\left(N^{-1}\right)
$$

and comparison with E_{3} yields

$$
\left|\mu\left(\left(b_{1}, b_{2}\right]\right)-2 \delta \mu\left(\left[a, b_{3}\right]\right)\right| \leq 3 N^{-1} r\left(N^{-1}\right) .
$$

Let us write $I=\left[\left(k+\frac{1}{2}\right) N^{-1},\left(k+1+\frac{1}{2}\right) N^{-1}\right], I_{\delta}=\left((k+1-\delta) N^{-1},(k+\right.$ $\left.1+\delta) N^{-1}\right]$, that is $I=\left[a, b_{3}\right], I_{\delta}=\left(b_{1}, b_{2}\right]$. We divide the last inequality by $\mu(I)$, which exceeds $c /(2 N)$ for $N \geq N_{0}$. We obtain

$$
\mu\left(I_{\delta}\right) / \mu(I) \geq 2 \delta+o(1), \quad N \rightarrow+\infty .
$$

3. Construction of curves

Let $h(t)$ be a function on $[0,1]$ subject to the following conditions

1) $0 \leq h \leq 1$,
2) $h(t)=4 t^{1 / 2}$ for $0 \leq t \leq \frac{1}{3}$,
3) $h(t)=h(1-t)$,
4) h is of class C^{1} on $\left[\frac{1}{4}, \frac{3}{4}\right]$,
5) $|h(t)-h(s)| \leq 4|t-s|^{1 / 2}$ for $0 \leq s \leq t \leq 1$.

Let $h_{n}(t)$ be the function on $[0,1]$ with period $1 / n$, such that $h_{n}(t)=h(n t) / n^{1 / 2}$ for $0 \leq t \leq 1 / n$.

Let $\ell_{n}(t)$ be a function of class $C^{1}[0,1]$, periodic with period $1 / n$, such that
6) $0 \leq \ell_{n} \leq h_{n}$,
7) $\ell_{n}(0)=0$ and $\ell_{n}(t)=h_{n}(t)$ for $n^{-3} \leq t \leq n^{-1}-n^{-3}$,
8) $\left|\ell_{n}(t)-\ell_{n}(s)\right| \leq 5|t-s|^{1 / 2}$.

We shall choose a sequence $\left(n_{j}\right)$ and set $f_{k}(t)=\sum_{1}^{k} \ell_{n_{j}}(t), f(t)=$ $\Sigma_{1}^{\infty} \ell_{n_{j}}(t)$. We require the following properties of f and f_{k} :
9) $|f(t)-f(s)| \leq 8|t-s|^{1 / 2}$.
10) $0 \leq f(t)-f_{k}(t) \leq n_{k}^{-3 / 2}$.
11) The inequalities $3|t-\tau|^{1 / 2} \leq f_{k}(t)-f_{k}(\tau) \leq 6|t-\tau|^{1 / 2} \quad$ hold whenever $\tau=i / n_{k}\left(1 \leq i \leq n_{k}-1\right)$ and $n_{k}^{-3} \leq|t-\tau| \leq\left(4 n_{k}\right)^{-1}$.

To obtain 10) we observe the inequality $0 \leq f(t)-f_{k}(t) \leq \Sigma_{k+1}^{\infty} n_{j}^{-1 / 2}$, and simply choose $n_{j+1}>16 n_{j}^{3}$. This choice is compatible with the rest of the construction and we don't mention it again.

To obtain 11) and 9) we let B_{k-1} be an upper bound for $\left|f_{k-1}^{\prime}\right|$, so that

$$
\begin{gathered}
\left|f_{k}(t)-f_{k}(\tau)-\ell_{n_{k}}(t)+\ell_{n_{k}}(\tau)\right| \leq B_{k-1}|t-\tau| \\
\leq B_{k-1}\left(4 n_{k}\right)^{-1 / 2}|t-\tau|^{1 / 2}
\end{gathered}
$$

for the numbers τ, t mentioned in 11). By 7) and 2) we find

$$
\ell_{n_{k}}(t)-\ell_{n_{k}}(\tau)=4|t-\tau|^{1 / 2}
$$

for these numbers, because $n_{k} \tau$ is an integer, and we obtain 11) by taking $B_{k-1}\left(4 n_{k}\right)^{-1 / 2}<1$. To obtain 9) we suppose that $\left|f_{p}(t)-f_{p}(s)\right| \leq$ $\left(6-p^{-1}\right)|t-s|^{1 / 2}$, for $p=k-1$. (This is true when $p=1$). Then

$$
\left|f_{k}(t)-f_{k}(s)\right| \leq\left|f_{k-1}(t)-f_{k-1}(s)\right|+\left|\ell_{n_{k}}(t)-\ell_{n_{k}}(s)\right|
$$

Since $\ell_{n_{k}} \leq n_{k}^{-1 / 2}$, we have the inequality

$$
\left|f_{k}(t)-f_{k}(s)\right| \leq\left(6-(k-1)^{-1}\right)|t-s|^{1 / 2}+2 n_{k}^{-1 / 2}
$$

Thus the required estimate is valid when $\left(k^{2}-k\right)^{-1}|t-s|^{1 / 2} \geq 2 n_{k}^{-1 / 2}$ or $|t-s| \geq 4 n_{k}^{-1}\left(k^{2}-k\right)^{2}$. But when the last inequality is violated, we can use the estimation

$$
\left|f_{k}(t)-f_{k}(s)\right| \leq B_{k-1}|t-s|+5|t-s|^{1 / 2}
$$

this yields the inequality in question provided $B_{k-1}|t-s| \leq|t-s|^{1 / 2} \cdot \frac{1}{2}$, or $|t-s| \leq\left(2 B_{k-1}\right)^{-2}$. One estimate or the other is available for large n_{k}.

4. The theorem

We retain the notations from $\S 3$ and extend the function f, constructed in $\S 3$, to $(-\infty, \infty)$ by defining $f(t)=f(0)$ for $t<0$ and $f(t)=$ $f(1)$ for $t>1$. We let Ω be $\{(x, t): x>f(t)\}, w$ be the parabolic measure on $\partial \Omega$ evaluated at (X, T) and w^{*} be the adjoint parabolic measure on $\partial \Omega$ evaluated at (Y, S) where (X, T) and (Y, S) are two fixed points in Ω with $T>1$ and $S<0$.

We observe, with the aid of maximum principle, that for $E \subseteq$ $\{(f(t), t): 0<t<1\}$, if $w(E)=0$ then $w^{(x, t)}(E)=0$ for every $(x, t) \in \Omega$; and if $w^{*}(E)=0$ then $w^{*(x, t)}(E)=0$ for every $(x, t) \in \Omega$.

Theorem: None of the three measures: m, w and w^{*} on $\partial \Omega$ is absolutely continuous with respect to another. In fact m, w and w^{*} are totally singular with respect to each other on $\{(f(t), t): 0<t<1\}$.

We first prove the following lemma and assume as we may that $(X, T)=(10,100)$.

Lemma 4: There are positive absolute constants C and $\rho<\frac{1}{32}$, so that whenever $\tau=i / n_{k}\left(1 \leq i \leq n_{k}-1\right), n_{k}^{-1}<\delta<\rho$,

$$
\begin{aligned}
I_{k} & =\left\{(f(t), t):|t-\tau|<\left(16 n_{k}\right)^{-1}\right\} \text { and } \\
E_{k} & =\left\{(f(t), t):|t-\tau|<\delta n_{k}^{-1}\right\}
\end{aligned}
$$

then $w\left(E_{k}\right) \leq C \delta^{3 / 2} w\left(I_{k}\right)$ for sufficiently large k.
Proof: For a fixed $\tau=i / n_{k}$, we let $A=\left(f(\tau)+5 / \sqrt{n_{k}}, \tau+1 / 8 n_{k}\right)$ and B be $A+\left(0,1 / 8 n_{k}\right)$. From 9) and Lemma 2 it follows that for some absolute constant C,

$$
w\left(E_{k}\right) \leq C w\left(I_{k}\right) w^{A}\left(E_{k}\right) .
$$

Let Φ be the map $(x, t) \rightarrow\left(\sqrt{n_{k}}(x-f(\tau)), n_{k}(t-\tau)\right)$ and G be the Green's function on $\Phi(\Omega)$. We note that $\partial \Phi(\Omega)=\Phi(\partial \Omega)$ is the graph of a Lip $\frac{1}{2}$ function with 8 as an upper bound for the Lip $\frac{1}{2}$ constant and Φ preserves parabolic functions (i.e. v is parabolic on $\Phi(\Omega)$ if and only if $v(\Phi)$ is parabolic on Ω). Let \bar{w} be the parabolic measure on $\partial \Phi(\Omega)$, thus $\bar{w}^{\Phi(A)}\left(\Phi\left(E_{k}\right)\right)=w^{A}\left(E_{k}\right)$. Because $\Phi(A)=\left(5, \frac{1}{8}\right)$ and $\Phi(B)=$ $\left(5, \frac{1}{4}\right)$, it follows from Lemma 3 that there exist absolute constants C, μ and $\rho<\frac{1}{32}$, so that

$$
\begin{aligned}
w^{A}\left(E_{k}\right) & =\bar{w}^{\Phi(A)}\left(\Phi\left(E_{k}\right)\right) \\
& \leq C \sqrt{\delta} G(\Phi(B) ; \mu \sqrt{\delta}, 0)
\end{aligned}
$$

if $0<\delta<\rho$.
Let $\alpha(t)=2|t-\tau|^{1 / 2}+f(\tau)-10 n_{k}^{-3 / 2}$. From 9), 10) and 11) it follows that $\alpha(t) \leq f(t)$ whenever $|t-\tau|<\left(4 n_{k}\right)^{-1}$. Therefore $\Phi(\Omega) \cap\{(x, t)$: $\left.|t|<\frac{1}{4}\right\} \subseteq\left\{(x, t): x>2|t|^{1 / 2}-10 n_{k}^{-1}\right\}$. let \tilde{G} be the Green's function on $\left\{(x, t): x>2|t|^{1 / 2}-10 n_{k}^{-1}\right\}$. We recall that $\Phi(B)=\left(5, \frac{1}{4}\right)$ and $n_{k}^{-1}<\delta<$ ρ, and obtain, by the maximum principle and the adjoint form of Lemma 1, that

$$
\begin{aligned}
& G(\Phi(B) ; \mu \sqrt{\delta}, 0) \\
& \leq \tilde{G}(\Phi(B) ; \mu \sqrt{\delta}, 0)=\tilde{G}^{*}(\mu \sqrt{\delta}, 0 ; \Phi(B)) \\
& \leq C\left(\mu \sqrt{\delta}+10 n_{k}^{-1}\right)^{2} \leq C \delta
\end{aligned}
$$

for absolute constants C. Thus $w^{A}\left(E_{k}\right) \leq C \delta^{3 / 2}$. This proves Lemma 4.

Proof of the Theorem: From the above lemma and the test for singular measures in §2 we see that w is totally singular to m on
$\{(f(t), t): 0<t<1\} \equiv S$, that is, there is a set $E \subseteq S$ of m measure zero but $w(E)=w(S)$. Similarly there is a set $E^{*} \subseteq S$ of m measure zero but $w^{*}\left(E^{*}\right)=w^{*}(S)$. From these properties and Theorem B, we conclude that w and w^{*} are mutually singular. The theorem follows easily.

REFERENCES

[1] B.E.J. Dahlberg: On estimates of harmonic measures. Arch. Rational Mech. Anal. 65, No. 3 (1977) 275-288.
[2] E.G. Effros and J.L. Kazdan: On the Dirchlet problem for the heat equation. Indiana Univ. Math. J. 20 (1971) 683-693.
[3] A. Friedman: Partial differential equations of parabolic type. Prentice-Hall, 1964.
[4] J.T. KEMPER: Temperatures in several variables: kernel functions, representations and parabolic boundary values. Trans. Amer. Math. Soc., 167 (1972) 243-262.
[5] I.G. Petrowski: Zur Ersten Randwertaufgaben der Warmeleitungsgleichung. Compositio Math. 1 (1935) 383-419.
[6] J.-M. Wu: On parabolic measures and subparabolic functions. Trans. Amer. Math. Soc. 251 (1979) 171-186.
(Oblatum 27-IV-1978 \& 23-X-1978)
University of Illinois
Urbana, Illinois

[^0]: * Research partially supported by an NSF-Grant at Illinois and an XL-Grant at Purdue.

