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SINGULARITY OF PARABOLIC MEASURES*

Robert Kaufman and Jang-Mei Wu

Abstract

We show by example that a recent result of Dahlberg on harmonic
measure for the Laplace equation can not be extended to parabolic
measure for heat equation. The example is based on the non-self-

adjointness of the heat operator; the methods are estimations of
Green’s function and construction of special boundary curves.
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Let f (t) be a continuous function on (-00, oo) and 12 ç R2 be the
region {(je, t): x &#x3E; f (t)}. Let m be the measure on an defined by
m (E) = the Lebesgue measure of {t: ( f (t ), t) E E}. If n is Dirichlet

regular for the heat equation (or adjoint heat equation), for a fixed
point (y, s) E f2, the parabolic measure (or adjoint parabolic measure)
of a Borel set E C af2 at (y, s), denoted by w(Y’s)(E) (or w*(y,s)(E»), is
defined to be the value at (y, s ) of the solution of the heat equation (or
adjoint heat equation) on f2 with boundary value 1 on E and 0 on

anBE in the Brelot-Peron-Wiener sense.
In case f (t) 0, and f2 = fx &#x3E; 01 it is known that m, w(xo,tO&#x3E;, w *(-,%,So)

are mutually absolutely continuous on {(0, t): So s t to}.
Let k(y,s) be the harmonic measure on an at (y, s) corresponding to

the Laplace equation d2laX2 + a2lat2 = 0. It is known by conf ormal
mapping that

THEOREM A: If f is Lip 1, then À (y,s) and m are mutually absolutely
continuous on an.

In fact, Dahlberg [1] has proved Theorem A for x E: R n, n - 2. The
proof depends explicitly on the self-adjointness of the Laplace equa-
tion. Domains with Lip 1 boundaries are the most general regions on
which the boundary behavior of harmonic functions has been exten-
sively studied.
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Because the affine transformations (x - ax + b, t - a t + c) are the
only diffeomorphisms that préserve solutions of heat équation [2],
régions with Lip i boundaries are very natural for studying solutions
of heat équation. In [5], Petrowski proved that if f (t) is Lip 2 then
every point on an is a regular point for heat equation.

Richard A. Hunt proposed the problem whether m, w and w* are
mutually absolutely continuous on an if f (t) is Lip 2. In [6], the first
author proved the following

THEOREM B: Suppose that f (t) is Lip 2 and E is a set on an with m
measure zero, then E is composed of two parts, one with w(y,S) measure
zero, the other with w*(y,s) measure zero f or each (y, s ) E n.

In this note, we show by example that m, w and w* can be
mutually singular on an, for certain Lip ] function f(t).

1. Lemmas on parabolic functions

We call solutions of heat équation parabolic functions.
For fixed (y, s) E R2, we dénote by W (x, t ; y, s ) the fundamental

solution of heat équation defined by

Suppose Q is Dirichlet regular for heat equation, we say g is the
Green’s function for n, if for each fixed (y, s) e f2, W(x, t; y, s) -
g(x, t; y, s) is the bounded parabolic function in n with boundary
value W(x, t ; y, s ) f or (x, t) e an.

LEMMA 1: Suppose D = {(x, t): x &#x3E; 2yftf}, (X, - T) is a point in D
with T &#x3E; 0 and g(x, t) is the Green’s function on D with pole at
(X, - T). Then there are constants c and C depending on (X, - T) so
that g(x, 0):5 Cx’ for 0  x  c.

PROOF: Let and and

and
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The level curve y defined by satisfies
the equation:

or

If (x, t) E y and - T :5 t  0 then x 2  - 4 t. Therefore if (x, t) E D and
t - - T, then (1 IN/8 îrT) - W(x, t;O, -2 T) 0. Let V be the region
D H 1(x, t): t &#x3E; - T} f1 {je  X - bI2}. We observe by the definitions of
Ci and C2 that

for (x, t) E S. When (x, t) is on the part of aV with t = -T or on the
part of a V with x = 2v1t;, the above inequality also holds because the
left side is zero and the right side is positive. In view of the maximum
principle for the solutions of heat equations [3, Chap. 2], we obtain

for (x, t) E S. When (x, t) is on the part of aV with t = - T or on the
part of a V with x = 2vïti, the above inequality also holds because the
Suppose f is Lip 2 satisfying

denote hvà(t. a) and
t + 2a). Under these assumptions, we may reformulate Lemma 1.4 in
[4] and Lemma 2.2 in [6] as follows.

LEMMA 2: There exist positive constants C, c depending on M only,
so that

whenever (
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LEMMA 3: Let (xo, to), (yo, so) be two fixed points in 12 with to &#x3E; so &#x3E;
a &#x3E; 0, and g be the Green’s function on 12. Then there are positive
constants C, li, p depending on a, M, (xo, to) and (yo, so) so that

whenever - a  t  a and 0  r  p.

2. A test for singular measures

Suppose that 1£ is a positive Borel measure on [0, 1], and that il is
not totally singular to Lebesgue measure m ; then d&#x3E;/dx a c &#x3E; 0 on
some set E of measure m (E) &#x3E; 0. Thus

as h -0+, when x E E. Letting h = 1, 2, 3, ... we can apply Egoroff’s
theorem to find a set Eo C E, with m (Eo) &#x3E; 0, and a sequence En &#x3E; 0

decreasing to 0, so that

when (n + 1 )-’ _ h _ n -’, and x E Eo. Let now r(u ) be a polygonal
function on (0, 1 ], defined by the conditions r(n -’) =,En-, 1 f or n ? 2 and
r is constant on [2, 1]. Then

whenever 0 s a  x  b s 1 and x E Eo.
Let 0  8  f and observe that by the Lebesgue density theorem, Eo

must meet one of the sets [(k + i)N-I, (k + 4)N-1] ( 1  k _ N - 2)
whenever N is sufficiently large. We apply the inequality on ..t-

measures to intervals [a, bl], [a, b2], [a, b3] with

We write these inequalities as
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Combination of El and E2 gives

and comparison with E3 yields

Let us write 1 = [(k + 2)N-’, (k + 1 + 2)N-1], Is = ((k + 1 - 8)N-1, (k +
1+8)N’], that is I = [a, b3], Is = (bl, b2]. We divide the last in-

equality by (7), which exceeds c/(2N) for N No. We obtain

3. Construction of curves

Let h(t) be a function on [0, 1] subject to the following conditions

Let hn ( t ) be the function on [0, 1] with period 1 / n, such that

hn(t) = h(nt)ln 1/2 for 0 - t s Iln.
Let en(t) be a function of clas s C 1 [o, 1 ], periodic with period 1 / n,

such that

We shall choose a sequence (n;) and set fk(t) _ 1 eni(t), f (t) _
, ). We req uire the followin-g properties of f and fk:

11) The inequalities hold

whenever T = ilnk (1  i s nk - 1) and n k 3   t - T s (4nk )-’ .
To obtain 10) we observe the inequality 0 s f(t) - fk(t) s k+l n;2,

and simply choose nj+l &#x3E; 16n;. This choice is compatible with the rest
of the construction and we don’t mention it again.
To obtain 11 ) and 9) we let Bk-l 1 be an upper bound f or 1ft-II, so that
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for the numbers T, t mentioned in 11). By 7) and 2) we find

for these numbers, because nkT is an integer, and we obtain 11) by
taking Bk-I(4nk)-1/2  1. To obtain 9) we suppose that lfp(t) - fp(s)1 
(6 - p -’)) t - s n2, for p = k - 1. (This is true when p = 1). Then

Since en,  nil/2, we have the inequality

Thus the required estimate is valid when .(k’ - k)-’l t - S 11/2 _ 2n k’12 or
It - s ? 4n k 1(k2 - k)2. But when the last inequality is violated, we can
use the estimation

this yields the inequality in question provided Bk-llt - s t - s 2 , 2,
or 1 t - s :5 (2B-i)’. One estimate or the other is available for large nk.

4. The theorem

We retain the notations from §3 and extend the function f, con-
structed in § 3, to (-00,00) by defining f ( t ) = f (o) for t  0 and f ( t ) _
.f ( 1 ) for t &#x3E; 1. We let .n be (x, t ): x &#x3E; f ( t )}, w be the parabolic
measure on an evaluated at (X, T) and w* be the adjoint parabolic
measure on an evaluated at (Y, S) where (X, T ) and (Y, S) are two
fixed points in f2 with T &#x3E; 1 and S  0.

We observe, with the aid of maximum principle, that for E c

(f (t), t): 0  t  1}, if w(E) = 0 then wx(E) = 0 for every (x, t) E 1;
and if w*(E) = 0 then w *x(E) = 0 for every (x, t ) E 2.

THEOREM: None of the three measures: m, w and w* on an is
absolutely continuous with respect to another. In fact m, w and w*
are totally singular with respect to each other on f (f (t), t): 0  t  1}.
We first prove the following lemma and assume as we may that

(X, T) = (10, 100).
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LEMMA 4: There are positive absolute constants C and p  32, so
that whenever ’

then }1 for sufficiently large k.

PROOF: For a fixed T = i/nk, we let

and B be +(0,1/8). From 9) and Lemma 2 it follows that for

some absolute constant C,

Let 0 be the map and G be the

Green’s function on 0(f2). We note that 90(n) = e(dl2) is the graph
of a Lip 2 function with 8 as an upper bound for the Lip 2 constant and

preserves parabolic functions (i.e. v is parabolic on 0(n) if and
only if v(O) is parabolic on ). Let w be the parabolic measure on
dO(f2), thus Wl/J(A)( l/J(Ek» = wA(Ek). Because O(A) = (5, 1) and O(B) =
(5, 4), it follows from Lemma 3 that there exist absolute constants C, g
and p  , so that

Let d From 9), 10) and 11) it follows
that a (t) --5 f (t) whenever 1 rherefore o(t2) n f(x, t):

let G be the Green’s function

on We recall that P(B) = (5, 4) and
p, and obtain, by the maximum principle and the adjoint form of
Lemma 1, that

for absolute constants C. Thus wA(Ek)  C83/2. This proves Lemma 4.

PROOF OF THE THEOREM: From the above lemma and the test for

singular measures in §2 we see that w is totally singular to m on
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{(f (t), t): 0  t  1} = S, that is, there is a set E C S of m measure zero
but w(E) = w(S). Similarly there is a set E* c S of m measure zero
but w*(E*) = w*(S). From these properties and Theorem B, we
conclude that w and w* are mutually singular. The theorem follows
easily.

REFERENCES

[1] B.E.J. DAHLBERG: On estimates of harmonic measures. Arch. Rational Mech. Anal.

65, No. 3 (1977) 275-288.
[2] E.G. EFFROS and J.L. KAZDAN: On the Dirchlet problem for the heat equation.

Indiana Univ. Math. J. 20 (1971) 683-693.
[3] A. FRIEDMAN: Partial differential equations of parabolic type. Prentice-Hall, 1964.
[4] J.T. KEMPER: Temperatures in several variables: kernel functions, representations

and parabolic boundary values. Trans. Amer. Math. Soc., 167 (1972) 243-262.
[5] I.G. PETROWSKI: Zur Ersten Randwertaufgaben der Warmeleitungsgleichung.

Compositio Math. 1 (1935) 383-419.
[6] J.-M. Wu: On parabolic measures and subparabolic functions. Trans. Amer. Math.

Soc. 251 (1979) 171-186.

(Oblatum 27-IV-1978 &#x26; 23-X-1978) University of Illinois
Urbana, Illinois


