@article{CM_1980__40_3_287_0, author = {Vaisman, Izu}, title = {Remarkable operators and commutation formulas on locally conformal {K\"ahler} manifolds}, journal = {Compositio Mathematica}, pages = {287--299}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {40}, number = {3}, year = {1980}, mrnumber = {571051}, zbl = {0401.53019}, language = {en}, url = {http://archive.numdam.org/item/CM_1980__40_3_287_0/} }
TY - JOUR AU - Vaisman, Izu TI - Remarkable operators and commutation formulas on locally conformal Kähler manifolds JO - Compositio Mathematica PY - 1980 SP - 287 EP - 299 VL - 40 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - http://archive.numdam.org/item/CM_1980__40_3_287_0/ LA - en ID - CM_1980__40_3_287_0 ER -
%0 Journal Article %A Vaisman, Izu %T Remarkable operators and commutation formulas on locally conformal Kähler manifolds %J Compositio Mathematica %D 1980 %P 287-299 %V 40 %N 3 %I Sijthoff et Noordhoff International Publishers %U http://archive.numdam.org/item/CM_1980__40_3_287_0/ %G en %F CM_1980__40_3_287_0
Vaisman, Izu. Remarkable operators and commutation formulas on locally conformal Kähler manifolds. Compositio Mathematica, Tome 40 (1980) no. 3, pp. 287-299. http://archive.numdam.org/item/CM_1980__40_3_287_0/
[1] Curvature and Homology. Academic Press, New York, 1962. | MR | Zbl
:[2] The sixteen classes of almost Hermitian manifolds and their linear invariants (preprint). | MR | Zbl
and :[3] Cohomologies et classes caractéristiques des choux de Bruxelles. Diff. Topology and Geometry, Proc. Colloq. Dijon 1974.Lecture Notes in Math 484, Springer-Verlag, Berlin, 1975, 79-120. | MR | Zbl
and :[4] Sur les structures presque complexes et autres structures infinitésimales régulières. Bull Soc. Math. France, 83 (1955), 195-224. | Numdam | MR | Zbl
:[5] Théorie globale des connexions et des groupes d'holonomie, Edizione Cremonese, Roma, 1955. | Zbl
:[6] Cohomology and Differential Forms, M. Dekker, Inc., New York, 1973. | MR | Zbl
:[7] On locally conformal almost Kähler manifolds, Israel J. of Math. 24 (1976), 338-351. | MR | Zbl
:[8] Locally conformal Kähler manifolds with parallel Lee form, Rendiconti di Mat ematica Roma (to appear). | MR | Zbl
:[9] Introduction à l'étude des variétés Kählériennes, Hermann, Paris, 1958. | MR | Zbl
: